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Abstract

Riggs, J.D. (2013). Selection of Random Effects Distributions in Mixed Counts Mod-
els: A Quasii-Likelihood Approach. PhD thesis, University of Northern Colorado,
Greeley, CO.

Generalized linear models with responses comprised of counts data are clus-
tered into homoscedastic groups by random effects that are considered to follow
either a normal or a gamma distribution. There are data sets for which it is shown
that the standard errors of the random effects estimates are only slightly adjusted
from those of the normal and gamma distributions when the random effects use
a power function, mean-variance relationship, or quasi distribution. The adjusted
standard errors is demonstrated by subjecting the random effects of selected data
sets to the power function quasi distribution, after first using these data to esti-
mate a value for the power function exponent, a method not used in the literature.
The efficacy of the quasi distribution is measured by comparing it with normal and
gamma distributions’ random effects standard errors, model overdispersion, and the
standardized random effects deviance residuals diagnostic plots. Comparison results
show that the power function quasi distribution model of random effects benefits is
data set-dependent.
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Preface

Discovering the unexpected in scientific data is often the path to fundamental break-
throughs in the physical sciences. The complexity of scientific inquiry and experi-
mentation increases as more subtle discoveries are sought. These subtle discoveries
often elude the capabilities of classical statistical techniques to detect, suggesting the
use of modern statistical methods. For instance, least squares solutions may result
in biased parameter estimates whereas likelihood estimators may provide optimal
error structures.

The motivation for this research into the power function mean-variance re-
lationship quasi distributions materialized from unsuccessful application of normal
linear model methods to sunspot counts data. Generalized linear modeling also
had difficulties when assuming that the random effects were normally distributed.
However, the power function quasi distribution holds promise.

The results of this dissertation show that non-normal random effects is one of
the subtle complexities that evades resolution by classical least squares solutions, and
yet is well-suited to hierarchical generalized linear models quasi-likelihood solutions.
While this research produced promising outcomes for the sunspot data, there is
room for further refinement of the technique. This modern quasi-likelihood method
may be artfully applied to many complex and subtle modeling problems.
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Symbols

Bold character vectors or matrices
.
= approximately equal to
⊕ exclusive or
∈ an element of
′ indicates a derivative
∝ proportional to
∼ distributed as
⊃ contained by
·̂ an estimated parameter
β fixed effects parameter vector
Beta(·, ·) beta distribution
γ response or conditional response dispersion model parameter vector
Γ diagonal matrix of overdispersion parameters
δ random effects dispersion model parameter vector
ζ random effects dispersion parameter
η systematic component matrix of the conditional response mean model
ηd systematic component of the conditional response dispersion model
ηR systematic component of the random effects mean model
ηdR systematic component of the random effects dispersion model
θ exponential family distribution canonical parameter vector
λ power normal distribution truncation parameter
µ mean of a distribution
µi response mean
µij conditional response mean
µRi random effects mean
ξ vector of pseudo-responses for the iterated weighted least squares
π mathematical constant
Σ variance-covariance matrix
σ2 variance

xi



xii

φ dispersion parameter
Φ(·, ·) standard normal cumulative distribution function
χ2 chi-square distribution
ψ power function mean-variance relationship quasi distribution exponent
ω fixed, unknown parameter vector
E(cot) expected value
D(·, ·) deviance function
d conditional response mean model deviance residuals vector
dR random effects mean model deviance residuals vector
e mathematical constant
ex exponential function
exp(·) exponential function
f(·) probability density function
g sunspot group count
g(·) conditional response mean model link function
gd(·) conditional response dispersion link function
gR(·) random effects mean model link function
gdR(·) random effects dispersion model link function
gamma(·, ·) gamma distribution
h(·, ·) h-likelihood
h+(·, ·) adjusted profile h-likelihood
I identity matrix
iid identically independently distributed
L(·) likelihood function
l(·) log-likelihood function
ln(·) natural logarithm
max(·) maximum
min(·) minimum
N (·, ·) normal distribution
N (·, ·) normal distribution
Poi(·) Poisson distribution
Q(·, ·) quasi-likelihood
Q+(·, ·) extended quasi-likelihood
Q∗(·, ·) generalized extended quasi-likelihood
q(·, ·) total quasi-likelihood
q+(·, ·) total extended quasi-likelihood
s sunspot count
s.e.(·) standard error
u random effects parameter vector
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V ar(·) variance of a random variable
v transformed random effects parameter vector
W matrix of iterated least squares weights
w Wolf number
X random variable
X2 Pearson’s chi-square
X fixed effects design matrix
Y response vector, particularly of counts data
Z random effects design matrix



Abbreviations

AAVSO American Association of Variable Star Observers
BCT Box-Cox transformation
CI confidence interval
CLT central limit theorem
CR conditional response
DBC deviance-based criterion
DEQL double extended quasi-likelihood
DHGLM double hierarchical generalized linear model
EF exponential family
EQGLM extended quasi-generalized linear model
EQL extended quasi-likelihood
FE fixed effect
GEQL generalized extended quasi-likelihood
GEQGLM generalized extended quasi-generalized linear model
GLM generalized linear model
HGLM hierarchical generalized linear model
IWLS iterated weighted least-squares
JGLM joint generalized linear model
LSE least squares estimator
MHLE maximum h-likelihood estimate
MLE maximum likelihood estimator
MME method of moments estimator
PL profile likelihood
PN power normal distribution
Q-Q quantile-quantile (plot)
QGLM quasi-generalized linear model
QHGLM quasi-hierarchical generalized linear model
QL quasi-likelihood
RE random effect
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Chapter 1

Introduction

Discovering the unexpected in scientific data is often the path to fundamental break-
throughs in the physical sciences. The complexity of scientific inquiry and experi-
mentation increases as more subtle discoveries are sought. These subtle discoveries
often elude the capabilities of classical statistical techniques to detect, suggesting the
use of modern statistical methods. For instance, least squares solutions may result
in biased parameter estimates whereas likelihood estimators may provide optimal
error structures.

The motivation for this research into the power function mean-variance re-
lationship quasi distributions materialized from unsuccessful application of normal
linear model methods to sunspot counts data. Generalized linear modeling also
had difficulties when assuming that the random effects were normally distributed.
However, the power function quasi distribution holds promise.

The results of this dissertation show that non-normal random effects is one of
the subtle complexities that evades resolution by classical least squares solutions, and
yet is well-suited to hierarchical generalized linear models quasi-likelihood solutions.
While this research produced promising outcomes for the sunspot data, there is
room for further refinement of the technique. This modern quasi-likelihood method
may be artfully applied to many complex and subtle modeling problems.

Generalized linear models enjoy substantial treatment in the statistics litera-
ture. These treatments consider data with binary, multinomial, and counts responses
modeled by techniques similar to linear regression and analysis of variance techniques
in the forms of logit, probit, and log-linear analyses. Nelder & Wedderburn (1972)
showed that these techniques and analyses share properties such as linearity in model
parameters and common estimation of parameters methods. Nelder’s work has been

3



4 CHAPTER 1. INTRODUCTION

expanded from fixed effects models to models for random effects and dispersion.
The generalized linear model, then, may be extended from one to four submodels
to form a single generalized linear model; that is, a model for the mean of the fixed
effects, a model for the fixed effects dispersion, a model of the mean of the random
effects, and a model for the random effects dispersion.

This dissertation examines modeling the mean and variance of random effects
in generalized linear models that fit what is considered to be overdispersed counts
data. Overdispersion for Poisson-distributed counts data occurs when the estimated
variance is greater than the estimated expected value. Suppose a data set is thought
to follow a Poisson distribution with mean µ, but the variance of these data exceed
µ, that is, for a random variable Yi, i = 1, 2, . . . , n, V ar(Ŷi) > E(Ŷi). Then these
data are considered to be overdispersed. Overdispersion occurs frequently in practice
and can manifest in data clustered by random effects. For example, for a Poisson
process, the observation interval may be a random length rather than a fixed length;
or each observed event may contribute a random amount to the total. In these cases,
a random effect added in the model may reduce the amount of overdispersion.

Overdispersion in data with a Poisson response conditional on random effects
of unspecified distribution is the system examined. These overdispered data will be
analyzed within the context of generalized linear models using maximum likelihood,
double extended quasi-likelihood (Lee & Nelder, 1996), h-likelihood (Lee & Nelder,
2006), and the extension proposed in Chapter 3 of this work.

1.1 Generalized Linear Model Structures

Classical response-with-covariates models, that is, general linear mixed models, as-
sume the response variable and the random effects (REs), including the residual
error, follow a normal distribution, are linear in the model parameters, and have
constant variance. This allows model parameter estimation with least squares meth-
ods. Many data sets have response variables and random effects that violate one or
more of these assumptions, for example, responses that follow a Poisson distribution
are unlikely to be linear in the model parameters. While remedial measures such
as transformations on the response variable or the covariates may be applied, these
measures may fall short of satisfying the assumptions. For data sets for which clas-
sical models are ill suited, the extended class of models, generalized linear models
(GLMs), are used, with model parameters often estimated using likelihood methods.

Nelder & Wedderburn (1972) introduced a unification of models linear on
the systematic component (model predictors) such as logistic and probit analysis
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for binomial variates, contingency tables for multinomialvariates, and regression for
Poisson- and gamma-distributed variates, in the form of the GLM. GLMs for an
individual random response variable, Yi, i = 1, 2, . . . , n, may be represented as

Yi ∼ EF (µi, a(φ)V (µi)),

ηi = xTi β, (1.1)

ηi = g(µi).

In equation 1.1, EF denotes a response variable distribution from the exponential
family (EF), µi is the response variable mean, φ is the EF dispersion parameter
in the dispersion function a(·), V (µi) is the response variable variance function, ηi
is the systematic component, the xTi = {xi1, xi2, . . . , xip}T is the ith row of the
systematic component design matrix of covariates, β = {β1, β2, . . . , βp} is the
vector of covariates parameters, and g(·) is the link function.

Wedderburn (1974) generalized the GLM response variable distribution from
a specific probability distribution in the EF to an EF distribution with just a specifi-
cation of the first and second moments. Specification of the just the first and second
moments gives the components of a quasi-generalized linear model as

Yi ∼ (µi, a(φ)V (µi)),

ηi = xTi β, (1.2)

ηi = g(µi),

where the terms are as defined in Equations 1.1, except no EF probability distribu-
tion for the response variable is specified. Models of the form of Equations 1.1 and
1.2 are known as mean models as the mean is linked to the model parameters. The
random response Yi are assumed to be distributed according to an unknown EF,
namely, Yi ∼ EF (·, ·); however, the generalized linear model literature drops the
EF designator for GLMs that are not necessarily probability distribution function
specific, that is, Yi ∼ (·, ·). This practice will be followed here as well.

Nelder & Pregibon (1987) expanded the quasi-generalized linear model from a
solitary mean model to include a model of the variance components, which is known
as the dispersion model. Wedderburn’s quasi-generalized linear model assumes the
dispersion parameter φ is constant. Nelder and Pregibon relax this requirement al-
lowing the dispersion parameter φi to vary with each predictor. A varying dispersion
parameter allows modeling of overdispersion. Nelder’s and Pregibon’s form of the
generalized linear model is called an extended quasi-generalized linear model. Figure
1.1 column 1 is a representation of the relationships between the mean model and,
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in column 2, the dispersion model in the extended quasi-generalized linear model.
The terms for the mean model are as in Equation 1.2 with the response variable
variance function denoted φiV (µi) to account for the varying dispersion parameter.
The random response variable of the dispersion model is the deviance di that follows
a distribution with the first and second moments specified by the EF dispersion pa-
rameter φi with the variance quadratic on the mean, the systematic component ηdi
is the ith row of the dispersion covariates design matrix gdi = (gi1, gi2, . . . , gip)

T ,
dispersion covariates parameters vector γ, and the link function is gd(·). The mean
model and the dispersion model may be solved jointly (Nelder & Lee, 1991), and
are then called joint GLMs (JGLMs).

Mean Model Components Dispersion Model Components

Yi ∼ (µi, a(φi)V (µi)) di ∼ (φi, 2φ
2
i )

ηi = xTi β ηdi = gTdiγ
ηi = g(µi) ηdi = gd(φi)

Figure 1.1 The GLM structures for the JGLMs include a mean model and a
dispersion model.

The various forms of the mean and dispersion models presented above describe
the mean model for covariates that consist of fixed effects. Fixed effects (FEs) are de-
fined by Milliken & Johnson (1992) as effects for which all possible levels are used in
the model. A significant number of data sets contain sources of variance in addition
to those attributable to the dispersion models already discussed. This additional
variation often originates with random effects (REs), defined by Milliken & Johnson
(1992) as those effects for which an incomplete number of levels of covariates are
used in the model, or the covariates are of random length. Recall as an example the
random interval length of a Poisson process. Random effects in generalized linear
models were introduced into the GLM to form the Hierarchical Generalized Linear
Model (HGLM) by Lee & Nelder (1996) and Lee & Nelder (2001). The HGLM is
the GLM analog to the general linear mixed model, which may contain both fixed
effects and random effects.

There are three submodels in the hierarchical generalized linear model: the
conditional response mean model which replaces the fixed effects mean models in
GLMs and quasi-GLMs due to dependence on random effects, the conditional re-
sponse dispersion model, and the random effects mean model. The terms for the
first row of Figure 1.2 are the random, individual grouped responses, conditional
(clustered) on random effects ui, Yij from a generalized linear model family such
that E(Yij | ui) = µij , and V ar(Yij | ui) = a(φij)V (µij) with linear predictor
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ηij = g(µij) = xTijβ + zTi v. The conditional response design matrix X, the param-
eter vector β and the ηij = g(µij) is analogous to the GLM and quasi-GLM above.
The random effects parameter vector v = (v1, v2, . . . , vn)T is a monotonic function
of the random effects ui that transforms the ui commensurate with the link function
g(µij). The random effects design matrix is Z = (zi1, zi2, . . . , ziq)

T .

The second submodel is the dispersion model analogous to the dispersion
model in Figure 1.1. The difference in indices is due to the clustering resulting
from the random effects.

The second row of Figure 1.2 is the mean model of the random effects. The
variable ui is a vector of random effects that may be based on a particular distribu-
tion or on the specification of first and second moments. The function vi = gR(ui)
accounts for the use of a link function ηij , and is a strictly monotonic function. This
is the third submodel.

Effect Mean Model Components Dispersion Model Components

Yij | ui ∼ (µij , a(φij)V (µij)) dij ∼ (φij , 2φ
2
ij)

Fixed ηij = xTijβ + zTi v ηdij = gTi γ

ηij = g(µij) ηdij = gd(φij)

ui ∼ (µRi, ζVR(µRi))
Random

vi = gR(ui)

Figure 1.2 The GLM structures for the HGLMs include a mean model, a
dispersion model, and a random effects model.

Generalized linear models with random effects were further extended by Lee
& Nelder (2006) to include a model of the random effects dispersion in addition
to the random effects mean model. This extension is known as the double hier-
archical generalized linear model (DHGLM). Figure 1.3 is a representation of the
relationships between the conditional response mean and dispersion models, and the
random effects mean and dispersion models in the DHGLM. The first row of Figure
1.3 is as defined in Figure 1.2, as is the second row first column. The second column
of the second row is the random effects dispersion model. The random effects dis-
persion model terms are the random effects deviance components dRi for which the
first and second moments of a distribution are specified, the systematic component
ηdRi represents the design matrix gTRi that combines with the the dispersion model
parameter vector δ to be estimated, and the link function gdR(·).

An aspect of HGLMs that is not treated in the generalized linear model lit-
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Effect Mean Model Components Dispersion Model Components

Yi | ui ∼ (µij), a(φij)V (µij)) dij ∼ (φij , 2φ
2
ij)

Fixed ηij = xTijβ + zTi v ηdij = gTdiγ

ηij = g(µij) ηdij = gd(φij)

ui ∼ (µRi, ζiVR(µRi)) dRi ∼ (ζi, 2ζ
2
i )

Random ηdRi = gTdRiδ
vi = gR(ui) ηdRi = gdR(ζi)

Figure 1.3 The GLM structures for the DHGLMs include a mean model, a
dispersion model, a random effects model, and a random effects dispersion model.

erature, and is the focus of this dissertation, is when the random effects have a
power function mean-variance relationship, VR(µRi) = ζµψRi to form a quasi distri-
bution. Figure 1.4 is the random effects power mean function generalized linear
models. The conditional response mean model is as defined in Figure 1.2. The con-
ditional response dispersion model is simplified from that of Figure 1.2 by setting
ηdi = gTi γ = γ0, for all i = 1, 2, . . . , n. The random effects part of Figure 1.4 dif-
fers from that of the HGLM (Figure 1.2) by the power function relationship of the
mean-variance relationship of the random effects mean model. The random effects
dispersion model is simplified similarly to the conditional response dispersion model
by setting ηdRi = gTRiδ = δ0, also for all i = 1, 2, . . . , n. This GLM structure of the
HGLM is studied in this dissertation.

Effect Mean Model Components Dispersion Model Components

Yij | ui ∼ (µij), a(φij)V (µij)) dij ∼ (φij , 2φ
2
ij)

Fixed ηij = xTijβ + zTi v ηdij = γ0
ηij = g(µij) ηdij = gd(φij)

ui ∼ (µRi, ζiµ
ψ
Ri) dRi ∼ (ζi, 2ζ

2
i )

Random ηdRi = δ0
vi = gR(ui) ηdRi = gdR(ζ)

Figure 1.4 The GLM structures for the DHGLMs include a mean model, a
dispersion model, a random effects power function, mean-variance relationship
model, and a random effects dispersion model.

A key characteristic for constructing the random effects power function mean-
variance relationship is overdispersion. An incorrect specification of the random
effects mean-variance relationship power function exponent, ψ, is known to lead to
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overdispersion. Recall that overdispersion is more variation than is expected from
the GLM specifications, and now is described in more detail.

Overdispersion has two major consequences (Cox, 1983). The first is that
summary statistics and parameter estimates have variances that are larger than
anticipated under a simpler model. This may result in incorrect conclusions con-
cerning inferences about the model. This problem has long been recognized, and
is commonly allowed for by an empirical inflation factor, either assumed from prior
experience or estimated. The second consequence is the possible loss of efficiency
in using statistics that are appropriate for a single-parameter family. Overdisper-
sion, as it is affected by the incorrect specification of random effects mean-variance
power function exponent, ψ, is the focal point of this dissertation. The method for
estimating ψ so overdispersion is minimized now is described.

1.2 Methodology

The generalized linear model literature has not addressed the situation when the
random effects mean model is defined by a power function mean-variance relationship
of the form VR(µRi) = ζµψRi, i = 1, 2, . . . , n, where ζ is the dispersion parameter,
VR(µi) is the variance function, µRi is the mean of the random effects, and ψ is
the power function exponent. This dissertation examines a method by which to
estimate the value of ψ when it is unknown and requires estimation. Further, it
will be shown that overdispersion in either or both the conditional response and
random effects deviances provides information that leads to the estimate of ψ. The
uniqueness of this research derives from insight into the power normal distribution
parameterization flexibility as regards modeling deviance truncation and skewness,
which can characterize the random effects variance exponent ψ. The insight stems
from realizing the hierarchical generalized linear model deviance holds information
that can characterize ψ.

Three data sets are used to show the efficacy of employing a random effects
power function mean-variance relationship quasi distribution to reduce the amount
of overdispersion. Two data sets are used in the literature for model comparisons:
They are the fabric data of Bissell (1972), and the rats data of Myers & Mont-
gomery (2002). It is shown that the random effects power function mean-variance
relationship quasi distribution parameters are identical when ψ represents either a
normal distribution or a gamma distribution. The third data set is sunspot counts
data supplied by the American Association of Variable Star Observers Solar Section.
The power function mean-variance relationship for the random effects is shown to
be no worse than the overdispersion in which the random effects are modeled by
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either a normal or a gamma distribution.

1.3 Objectives

The classical linear modeling of overdispersed data often involves a response variable
transformation that attempts to satisfy the assumption of a normally-distributed
response. As the response variable of interest is counts, they are subject to a large
quantity of apparent outliers. These apparent outliers generally result as the more
appropriate Poisson distribution for the response variables. However, even when the
counts data are modeled by a hierarchical generalized linear model with the counts
conditional upon random effects that follow a normal or a gamma distribution,
significant overdispersion remains. This dissertation explores the use of a power
function mean-variance relationship for the random effects, and its effect on the
random effects mean model deviation.

The objective of this research is to account for overdispersion in HGLMs with
counts conditional response variables that follow a Poisson distribution, and the
random effects mean-variance relationship has a power function whose exponent, ψ,
must be estimated.

The research questions are:

Q1 Can the power function exponent, ψ, of the random effects mean-variance
relationship quasi distribution can be estimated?

Q2 Will estimates of the power function exponent, ψ, reduce the amount of
overdispersion in the conditional response over those when the random
effects follow a normal or the gamma distribution?

Q3 Will estimates of the power function exponent, ψ, reduce the random
effects estimated standard errors over the standard errors from random
effects of either a normal or a gamma distribution?

Chapter 2 provides the background and literature review required to develop
the use of a power function mean-variance relationship quasi distribution for the
random effects. Chapter 3 develops the methods and techniques used to define the
overdispersion in HGLMs with a power function mean-variance relationship for the
random effects. Chapter 4 presents the efficacy of the power function on overdis-
persion and random effects standard errors for the fabric, rats, and sunspot data.
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Chapter 5 draws conclusions on the power function utilization along with future
developments.
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Chapter 2

Literature Review

This chapter reviews the literature on the development of the class of statistical
models known as generalized linear models with the purpose of providing the back-
ground necessary to support the enhancement to these models that this dissertation
advances. The Introduction Section introduces the topic of generalized linear models
as an extension of general linear models. The Generalized Linear Models Section
gives the generalized linear model details necessary for the development of model
extensions. The Quasi-Generalized Linear Models and Quasi-Likelihood Section de-
scribes quasi-generalized linear models. The Extended Quasi-Generalized Linear
Model Section describes extended quasi-generalized linear models. The Generalized
Extended Quasi-Generalized Linear Model Section describes generalized extended
quasi-generalized linear models. The Joint Generalized Linear Model Estimation
Section describes joint generalized linear model estimation. The Hierarchical Gen-
eralized Linear Models Section describes hierarchical generalized linear models. The
IWLS for DEQL Section describes the iterated weighted least squares procedure for
double extended quasi-likelihood estimation. Finally, the Deviance-Based Criterion
For GLM Selection Section describes how GLMs are selected from their deviances.

2.1 Introduction

Linear models theory has been applied successfully to many data sets. Perhaps
the best known linear models are those using analysis of variance and regression
analysis, which use least-squares methods to estimate model parameters. Least
squares estimation requires the response variables follow a normal distribution, and
the relationship between the response variables and the covariates is the identity.

13
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In linear models, the response variables are continuous data. Thus, for a vector

Y = (Y1, Y2, . . . , Yn)T of random variables, Y
iid∼ N (Xβ, σ2I), where

iid∼ means
identically independently distributed, N (·, ·) indicates a normal distribution, X is
the n × p design matrix of covariates, β = (β1, β2, . . . , βp)

T is the vector of
parameters to be estimated via least squares, and I is the p × p identity matrix
that equivalently distributes the variance σ2 across the p covariates. The linear
expectation model for fixed effects may be written in matrix form as

E(Y ) = Xβ. (2.1)

The linear expectation model with both fixed and random effects may be
written

E(Y | u1, u2, . . . , uk) = Xβ +Z1u1 + · · ·+Zkuk, (2.2)

where Y , X, and β are as in Equation 2.1; Z1u1 + · · ·+Zkuk is the random effects

part with ui
iid∼ N (0, σ2i I), and Zi are the random effects design matrices of known

constants, for i = 1, 2, . . . , k; and the population parameters of this mixed effects
model are β for the fixed effects, and σ21, σ

2
2, . . . , σ

2
k for the k random effects.

The analysis of the random part includes estimating, hypothesis testing, and
confidence interval construction about the σ2i ; and the analysis of the fixed part
includes estimating, hypothesis testing, and confidence interval construction about
estimable functions of β.

Standard estimation methods include ordinary least squares, generalized least
squares, and the mixed model equations described by Milliken & Johnson (1992).
Although linear models can be useful for nonnormal data as well as for normal data,
these standard estimation methods do not necessarily produce usable results for non-
normal data modeling. Some estimation problems include inefficient or inaccurate
estimates, estimates outside the range of permissible values, and misleading signif-
icance values in hypothesis tests. See Box & Cox (1964); Box, Hunter & Hunter
(1978); and Belsley, Kuh & Welsch (1980).

2.2 Generalized Linear Models

The generalized linear model Nelder & Wedderburn (1972) extends linear model the-
ory to allow for responses that do not necessarily follow a normal distribution or a
constant-variance distribution, and it allows for response-to-covariates relationships
to be other than the identity. The generalized linear model (GLM) was developed
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for distributions included in the exponential family of distributions, and use like-
lihood estimation for parameter evaluation. Likelihood function extensions, which
relax the generalized linear model from distribution specific models to models that
specify only the mean-variance relationships, provide less restrictive parameter esti-
mation than the maximum likelihood. These extensions also allow modeling of both
fixed and random effects which may be applied to data sets that are structurally
over-dispersed, i.e., possess more variation than assumed by the host probability
distribution or mean-variance relationship. First, the structures of GLMs is needed.

2.2.1 Generalized Linear Model Structure

The generalized linear model for exponential family (EF) response variables consists
of three components. The first component is a random component. The second
component is a systematic component. The third component is a link function.

The first component is a random component that describes the variation in
the data. The random component is a random variable Yi i = 1, 2. . . . , n, with a
probability distribution function from the EF, such as the normal, Poisson, gamma,
and binomial, etc., as described above.

The second component is a systematic component

ηi = xTi β, (2.3)

that specifies the variation in the response variable accounted for by the p-dimensional
vector of design matrix covariates xTi = (xi1, xi2, . . . , xip)

T , i = 1, 2, . . . , n. These
covariates may be quantitative, nominal, or they may be a mixture or both. The
vector of model parameters, β = (β1, β2, . . . , βp)

T , are considered unknown values
that require estimation.

The third component is a link function

ηi = g(µi), (2.4)

that specifies the relationship between the random component and the systematic
component. The link function, g(·), is strictly monotonic and is twice differentiable.
The mean, µi, is the expected value of the random response Yi such that µi = E(Yi).

The GLM structure assumes a random response variable with a distribu-
tion from the EF such that, for an individual random response variable, Yi, i =
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1, 2, . . . , n, a mean model is

Yi ∼ EF (µi, a(φ)V (µi)),

ηi = xTi β, (2.5)

ηi = g(µi).

In equation 2.5, EF denotes a response variable distribution from the exponential
family, µi is the response variable mean, φ is the EF dispersion parameter used in
the constant function a(·), V (µi) is the response variable variance function, ηi is the
systematic component, the xTi = {xi1, xi2, . . . , xip}T is the ith row of the covariates
design matrix, β = {β1, β2, . . . , βp} is the vector of covariates parameters, and
g(·) is the link function.

2.2.2 Parameter Estimation for Generalized Linear Models

Various methods for GLM parameter estimation have been presented by Nelder &
Wedderburn (1972); McCullagh & Nelder (1989); Lee, Nelder & Pawitan (2006).
The GLM with predictors used to estimate the parameters of the mean model with
systematic component ηi = xTi β, and link function g(µi), has the log-likelihood

`(θ, φ;y) =

n∑
i=1

[
yig(xTi β)− xTi β

a(φ)
+ c(yi, φ)

]
. (2.6)

The GLM for a response variable that follows a Poisson distribution is

`(θ, φ;y) =
n∑
i=1

(
yix

T
i β − exp(xTi β)− ln yi!

)
. (2.7)

Descriptions of the method of Maximum Likelihood and Iterated Weighted
Least Squares are found in McCullagh & Nelder (1989).

2.2.3 Deviance in Generalized Linear Models

Lee et al. (2006) state that the main use of deviance in GLMs is model comparison,
and the analysis of deviance is a generalization of the classical analysis of variance.
Also, deviance is used as a measure of lack-of-fit. For a measure of goodness-of-fit,
analogous to the residual sum of squares for normal models, two such measures are in
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common use: the first is the generalized Pearson X2 statistic, and the second is the
log likelihood-ratio statistic, called the Deviance in GLMs. These are, respectively,

X2 =
∑
i

(y−µ̂i)
2

V (µ̂i)
(2.8)

and

D = 2φ[`(y; y)− `(µ̂, y)], (2.9)

where ` is the log-likelihood of the distribution. For normal models, the scaled de-
viances X2/φ and D/φ are identical and become the scaled residual sum of squares,
having an exact χ2 distribution with n − p degrees of freedom. Usually they are
different and asymptotic approximation is used for non-normal distributions.

The deviance is considered to have an advantage as a measure of discrepancy
in that it is additive for nested sets of models, leading to likelihood-ratio tests.
The χ2 approximation is usually quite accurate for the differences of deviances even
though it could be inaccurate for the deviances themselves. Another advantage of
the deviance over the X2 is that it leads to the best normalizing residuals (Pierce &
Schafer, 1986), which will be important in Chapter 4.

2.2.4 Estimating the Generalized Linear Model Dispersion Param-
eter

Suppose the dispersion parameter, φ 6= 1, as in the overdispersed Poisson distri-
bution. If c(yi, φ) from Equation 2.6 is known, then the full likelihood is used to
estimate β and φ jointly. However, usually c(yi, φ) is not available, so estimation of
φ needs special consideration (Lee et al., 2006). For the GLM, φ may be estimated
using either X2 or D, divided by the appropriate degrees of freedom. Given the
correct model, X2 is asymptotically unbiased whereas D is not. However, D often
has smaller sampling variance so that, in terms of Mean Square Error, neither is
uniformly better (Lee & Nelder, 1996).

2.2.5 Generalized Linear Model Deviance Residuals

In GLMs the deviance is given by the sum of deviance components

D =
∑

di, (2.10)
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where the deviance component di is

di = 2

∫ yi

µ̂i

yi − s
V (s)

ds. (2.11)

For responses yi that follow a Poisson distribution, the deviance component is

2

[
yi ln

(
yi
µ̂i

)
− (yi − µ̂i)

]
. (2.12)

Residuals r = y − µ̂ are central in model checking for normal models. Two
different types of residuals have been extended for use with GLMs: standardized
(Studentized) and deletion residuals. Lee et al. (2006) suggest using standard-
ized residuals from GLMs for checking assumptions about components. Note that
V ar(di) = φ(1 − q)), so that a residual with a high leverage tends to have large
variance. The standardized residuals are

r =
y − µ̂√
φ(1− q)

. (2.13)

The standardized Pearson residual is

rsp =
rp√

φ(1− q)
=

y − µ̂√
φV (µ̂)(1− q)

. (2.14)

The standardized Pearson residual for a Poisson-distributed response is

rsp =
y − µ̂√
φµ̂(1− q)

. (2.15)

The standardized deviance residual is

rsd =
rD√

φ(1− q)
=

sign(y − µ̂)
√
d√

φ(1− q)
. (2.16)

Pierce & Schafer (1986) state that the deviance residuals give a good approximation
to normality for all GLM distributions, so normal probability plots can be used for
model checking. Besides the use of normal probability plot model checking, Nelder
(1990) describes the use of the standardized residuals in plots against the fitted
values on the constant-information scale, and the plot of the absolute residuals.

The desirable models have Studentized residuals that follow a normal distri-
bution, and this quality is exploited in determining the power on the mean-variance
relationship. However, the Studentized residuals are not often normally distributed.
The power normal distribution is a distribution with useful properties for describing
GLM residuals, and a discussion follows.
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2.2.6 Power Normal Distribution

Studentized deviance residuals are assumed to be normal, thought this is often not
the case. A common approximation is the power normal (PN) distribution. The
PN is useful to characterize GLM residuals when they are approximately normally
distributed, as well as when they are skewed, particularly, right skewed.

Power normal distribution parameters are usually estimated under the as-
sumption that the transformed distribution is normal, though actually it is a trun-
cated normal distribution. This typically is not a problem when the intent is to
achieve an approximately normal distribution from the transformed data. The es-
timators of the power normal distribution percentiles, for example, based on the
likelihood estimation method, are not consistent estimators. Therefore, it is neces-
sary to find unbiased and consistent parameter estimates and functions of the the
parameter estimates when the parameters are determined under the assumption that
the transformed distribution is a normal distribution.

Suppose X is a random variable with support on the positive real numbers
and Y defined as

Y =

{
Xλ−1
λ , λ 6= 0

ln(X) , λ = 0
(2.17)

where λ is the transformation parameter (Box & Cox, 1964). The inverse of the
normal random variable Y is

X =

{
(λY + 1)

1
λ , λ 6= 0

exp(Y ) , λ = 0
(2.18)

Y is more accurately represented as a truncated normal (TN) distribution than a
normal distribution, thus,

Y =

{
T N (µY , σ

2
Y ,−

1
λ) , λ 6= 0

N (µY , σ
2
Y ) , λ = 0,

(2.19)

where 1
λ is the left or right truncation value. The probability distribution function

(pdf) of Y is

g

(
Y | µ, σ2,− 1

λ

)
=

1

K(T )

1√
2πσ2

exp

[
− 1

2σ2
(Y − µ)2

]
. (2.20)
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The constant K(T ) is

K(T ) =

{
Φ[sgn(λ)T ] , λ 6= 0

1 , λ = 0,
(2.21)

where Φ is the cdf of the standard normal distribution and T = 1
λσ + µ

σ , which makes
K(T ) the normalizing constant corresponding to the left or right point of truncation.
Therefore, with only positive real number support for a random variable X,

Y (λ) =

{
Xλ−1
λ ∼ T N (µ, σ2,− 1

λ) , λ 6= 0

ln(X) ∼ N (µ, σ2) , λ = 0.
(2.22)

Redefine the random variable X such that X ∼ PN (λ, µ, σ), i.e., X follows a
power normal distribution. The pdf is

f
(
X | λ, µ, σ2

)
=

1

K(T )

1√
2πσ2

Xλ−1 exp

[
− 1

2σ2
(pλ(X)− µ)2

]
, X > 0, (2.23)

where K(T ) is as above, and
pλ(X) = Y. (2.24)

The log-likelihood function of X∼̇PN(λ, µ, σ2) is given by

`(λ, µ, σ2 | y) = −n
2

ln(2π)− n
2

lnσ2− 1

2σ2

n∑
i=1

(yi(λ)−µ)2+(λ−1)

n∑
i=1

yi−n lnK(T ).

(2.25)

The parameter estimation procedure proposed by Box & Cox (1964) assumes that
K(T ) = 1, and constructs the following profile likelihood for λ:

l∗(λ) = −n
2

ln σ̂∗2λ + (λ− 1)

n∑
i=1

yi −
n

2
(ln 2π + 1), (2.26)

where

σ̂∗2λ =
1

n

n∑
i=1

(y(λ)− µ̂∗λ)2, (2.27)

and

µ̂∗λ =
1

n

n∑
i=1

yi. (2.28)
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The parameter λ is estimated via MLE. The assumption that K(T ) = 1 has that
Yi follows a normal distribution (Maruo, Shirahata & Goto, 2011), but Yi is strictly
speaking a truncated normal. Therefore the estimators of λ, µ, and σ2, based on
MLE, are not consistent estimators, and the estimators of the functions of these
parameters are not consistent (Maruo et al., 2011). To obtain consistent estimators
of these parameters, Maruo et al. (2011) use a Newton-Raphson algorithm that
accounts for K(T ) in the form of a profile likelihood:

ln(λ) = −n
2

ln 2π− n

2
ln σ̂2λ−

1

2
σ̂2λ

n∑
i=1

(yi(λ)− µ̂λ)2 + (λ− 1)

n∑
i=1

ln yi−n lnK(T (λ)).

(2.29)

However, Freeman & Modarres (2006a) and Freeman & Modarres (2006b) provide
consistent moment estimators in which K(T ) 6= 1 is possible. A series estimate for
the moments, after Freeman & Modarres (2006a) and Freeman & Modarres (2006b),
is now discussed.

2.2.7 Power Normal Parameter Estimation

As the MLEs of the parameters of the PN distribution are not asymptotically con-
sistent (Maruo et al., 2011), Freeman & Modarres (2006a) and Freeman & Modarres
(2006b) provide useful forms for the moments of a PN distribution. The rth moment
of X, the pre-transform random variable, is

EXr =

{∫∞
− 1
λ

(λy + 1)
r
λφ
(y−µ

σ

) dy
dσ , λ > 0

exp(rµ+ r2σ2/2) , λ = 0.
(2.30)

In the case when λ > 0, Y follows a truncated normal distribution as

Y ∼ T N
(
µ, σ2,− 1

λ

)
. (2.31)

When Y has a truncated normal distribution, X = (λY + 1)
1
λ can have a power

normal distribution. This is useful to obtain a mean and variance for X, which is
now developed from Freeman & Modarres (2006a) and Freeman & Modarres (2006b).

Let S(y) = (λy + 1)
r
λ . Expand S(y) in a power series around µ to obtain

S(y) =

∞∑
k=0

1

k!
S(k)(µ) (y − µ) (2.32)
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where

S(k)(y) = (λy + 1)
r
λ
−k

k−1∏
l=1

(r − lλ). (2.33)

Lemma 2.2.1 Let X ∼ PN (λ, µ, σ2). If

Y =
Xλ − 1

λ
(2.34)

and

Z =
Y − µ
σ

, (2.35)

then

EXr =

{∑∞
k=0

1
k!S

(k)(y)σkEZk , λ > 0

exp(rµ+ r2σ2/2) , λ = 0,
(2.36)

where Z ∼ T N (0, 1, T ) and

EZk =
φ(T )

1− Φ(T )
Hk−1(T ) +R, (2.37)

for T as in Equation 2.21, R a polynomial of degree k − 2 in Z, and Hk−1 is the
(k − 1)th Chebyshev-Hermite polynomial.

When Y follows an approximately normal distribution,

E(Y − µ)r =


σkk!

s
k
2 ( k2 )!

, k even

0 , k odd,
(2.38)

this leads to an infinite series moment generating function, as per the Lemma 2.

Lemma 2.2.2 Let X ∼ PN (λ, µ, σ2), λ 6= 0 and Y ∼ N (µ, σ2), then

EXr =
∑

even k≥0

σkk!

s
k
2

(
k
2

)
!
S(k)(y). (2.39)
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Hence,

EXr =


∑

even k≥0
σkk!

s
k
2 ( k2 )!

(λY + 1)
r
λ
−k∏k−1

l=1 (r − lλ) , λ 6= 0

exp(rµ+ r2σ2/2) , λ = 0.
(2.40)

The series approximation of the first moment, µ, is

µ = EX1 =

{
(λY + 1)

1
λ (1− λ2) , λ 6= 0

exp(µ+ σ2/2) , λ = 0,
(2.41)

the calculation of which is found found in Appendix A.

The properties of the PN described above will be used in the development of
GLMs that depend on random effects.

2.3 Quasi-Generalized Linear Models and Quasi-Likelihood

The discussion of GLMs thus far assumed a complete probability density function
from the EF was required to obtain estimates of the parameters for a mean model.
However, many data sets exist in which a complete probability density function
specification is not available. The subset of these data sets for which knowledge
only of the first two moments is available, i.e., the mean and the variance, may
have tractable mean model estimators, and may be obtained via quasi-likelihood
methods.

Wedderburn (1974) introduced a form of the likelihood estimation for data
series in which only the mean and variance may be determined. He called this form
of the likelihood the quasi-likelihood. The difference between the true likelihood and
the quasi-likelihood (QL) is that the true likelihood requires complete probability
density function specification, whereas the QL requires only knowledge of the first
two moments. Models that may have model parameters estimated by QL still have a
random component, a systematic component, and a link function component. These
three components and model parameter estimation via the quasi-likelihood result in
a relaxed form of the GLM, called a quasi-GLM (QGLM).

2.3.1 Definition of Quasi-Likelihood

Wedderburn (1974) defined a QL function such that, for a single random response
Y = (Y1, Y2, . . . , Yn)T with mean EYi = µi and variance V ar(Yi) = a(φ)V (µi), for
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µi a function of unknown parameters β = (β1, β2, . . . , βp)
T , and V (µi) a known

function, then
∂Q(µi; yi)

∂µi
=

yi − µi
a(φ)V (µi)

, (2.42)

or equivalently, for some c(yi),

Q(µi; yi) =

∫ µ

i

yi − µ′i
a(φ)V (µi)

dµ′i + c(yi). (2.43)

For independent observations, the total QL is

q(µ;y) =
∑
i

Q(µi; yi). (2.44)

The QL, as characterized by a mean-variance relationship, behaves largely as
a true likelihood when φ is known (Wedderburn, 1974). Hence,

E
(
∂q

∂µ

)
= 0, (2.45)

and [
E
(
∂q

∂µ

)]2
+ E

(
∂2q

∂µ2

)
= 0. (2.46)

Further, if the true log-likelihood is `(µ), by the Cramér-Rao lower bound theorem,

− E
(
∂2q

∂µ2

)
=

1

V (µ)
≤ −E

(
∂2l

∂µ2

)
, (2.47)

with equality if the true likelihood has the EF form. If a(φ) is not known, the
quasi-distribution is generally not in the EF (Wedderburn, 1974).

2.3.2 Quasi-Likelihood Models

With the QL approach, for individual random responses Yi, i − 1, 2, . . . , n, predic-
tors xTi , and using a known link function g(·), the expected values of the random
responses are,

EYi = µi = g(xTi β), (2.48)
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where g(µi) = xTi β is the systematic component operating through a link function
g(·). The variances of the random responses are,

V ar(Yi) = a(φ)V (µi) (2.49)

= V (βi, φ). (2.50)

The estimating equation for β is, for a(φ) = 1,∑
i

xi
1

Vi
(yi − xTi β) = 0, (2.51)

where Vi = V (βi, φ). The weighted least squares estimate is

β̂ =

(∑
i

xix
T
i

Vi

)−1∑
i

xTi y

Vi
(2.52)

= (XT
i V
−1X)−1XTV −1y, (2.53)

where X is the n× p model matrix (Xi1, Xi2, . . . , Xin), V is the variance matrix
consisting only of diag(Vi), and the response vector y = (y1, y2, . . . , yn)T .

The QL extends the standard GLM by allowing a dispersion function, a(φ),
with parameter φ to EF models. This extension gives a more flexible and direct
modeling of the variance function (Lee et al., 2006). The QL estimators may be
obtained using IWLS.

2.3.3 Deviance in Quasi-Generalized Linear Models

Wedderburn’s QL function for an individual observation was given by Equation 2.42
as

∂Q(µi; yi)

∂µi
=

yi − µi
a(φ)V (µi)

. (2.54)

The deviance function, which measures the discrepancy between the observation and
its expected value, is obtained from the analogue of the log-likelihood-ratio statistic

D(yi;µi) = −2[Q(yi;µi)−Q(yi; yi)] (2.55)

= −2

∫ µi

yi

yi − µi
V (µi)

. (2.56)
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Wedderburn (1974) and McCullagh (1983) show that quasi-likelihoods, and
their associated maximum quasi-likelihood estimates have many properties analo-
gous to those of likelihoods and their associated maximum likelihood estimates. In
particular, the maximum quasi-likelihood estimate β̂ is asymptotically normal with
mean β, and asymptotic covariances may be derived in the usual fashion from the
second derivative matrix of Q. Further, if HA and HB are two nested hypotheses
for comparing models A and B of dimension A < B, then, under HA, the change in
deviance

D(µ̂B; µ̂A) = D(y; µ̂A)−D(y; µ̂B) (2.57)

has an asymptotic χ2
B−Z distribution.

2.3.4 Estimating the Quasi Generalized Linear Model Dispersion
Parameter

Wedderburn relaxes the assumption of a known variance function of Yi by allow-
ing an unknown constant of proportionality φ, so that V ar(Yi) = φV (µi), where
a(φi) = φ. The introduction of the dispersion parameter does not alter the estima-
tion of the regression coefficients β. However, φ does appear as a scale factor in
the asymptotic distributions described above, and for these purposes an estimate is
required. Wedderburn suggested the bias-corrected mean X2 statistic

φ̂ =
X2

n− q
(2.58)

=
1

n− q
∑ (yi − µ̂i)2

V (µ̂i)
. (2.59)

Many of the ideas about, and procedures for fitting generalized linear models
can be extended when likelihoods are replaced by quasi-likelihoods (Nelder & Preg-
ibon, 1987). One remaining problem concerns the comparison of difference variance
functions on the same data set. As the variance function determines the units of
measurement for D(y; µ̂) and X2, differencing these discrepancy measures across
variance functions is not possible. To assess variance function it is necessary to ex-
tend the definition of quasi-likelihood, which is provided by the extended QL given
in the next section.
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2.4 Extended Quasi-Generalized Linear Model

In applications for which the generalized linear model is well suited, there are sev-
eral circumstances when overdispersion may be present. Williams (1982) and An-
derson (1988) report that the appearance of overdispersion may occur as the result
of unmeasured covariates or factors in the model. Problems may also occur if the
functional form of the systematic component is incorrectly specified. The presence
of outliers may also give the appearance of overdispersion. The removal of such
observations may reduce the amount of overdispersion or remove the overdispersion
altogether. An improper selection of a link function may also appear to exhibit
overdispersion. Sparseness of the data is another potential cause that can lead
to overdispersion. Of particular interest here in the incorrect specification of the
distribution or the first and second moments of the random effects. An incorrect
specification is considered yet another cause of overdispersion.

Several approaches to modeling overdispersion were outlined by Wilson (1989),
Anderson (1988) and Jorgensen (1987) to name a few. One approach examines
overdispersion as it relates to the random component of a GLM by constructing
models where parameters may vary according to a known distribution, for example,
Griffiths (1973), Williams (1975), Crowder (1978), Koehler & Wilson (1986), and
Wilson & Koehler (1991); or an unknown distribution, for example, Williams (1982),
Breslow (1984), and Wilson (1989). Others have modeled overdispersion by intro-
ducing a linear predictor for the dispersion via likelihoods, for example Efron (1986),
Aitkin (1987), and Smyth (1989); extended quasi-likelihoods, e.g. Nelder & Preg-
ibon (1987) and McCullagh & Nelder (1989); and pseudo-likelihoods, e.g., Carroll
& Ruppert (1982). Yanez (1993) generalized the extended quasi-likelihood (EQL)
function, where the dispersion parameters are modeled with respect to covariates
in a manner similar to that of the mean parameters without the specification of a
likelihood equation.

The QL has no provision to estimate the dispersion parameter φ, which dis-
allows treatment of overdispersion; i.e., if φ > 1, then V ar(Yi) = φV (µi) is indeter-
minate. However, for independent observations and using Equation 2.42,

∂

∂µi
q(µi; yi) =

yi − µi
φV (µi)

, (2.60)

Wedderburn (1974) uses the method of moments to find φ as

V ar

(
yi − µi√
V (µi)

)
= φ, (2.61)
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and a consistent estimate is

φ̂ =
1

n− p
∑
i

(yi − µi)2

V (µi)
, (2.62)

where µi is evaluated from the estimated parameters β, and p is the number of these
parameters in the model.

Nelder & Pregibon (1987) have proposed an Extended Quasi-Likelihood (EQL)
for estimating φ, thus giving an extended GLM (EQGLM). They give an approxi-
mate log-likelihood of a single response yi as

Q+
i (µi, φ; yi) = −1

2
ln [2πφv(yi)]−

1

2φ
D(yi, µi), (2.63)

where D(yi, µi) is as in Equation 2.55. The total EQL is denoted

q+ =
∑
i

Q+
i . (2.64)

Nelder & Pregibon (1987) call this the extended quasi-likelihood. This is exact if
yi ∼ N (µi, σ

2). The approximation is reasonable if the likelihood of yi is regular.

The EQL has a deviance statistic that is φ · χ2
1-variate, which is a gamma

distribution with mean φ and variance 2φ2. This is equivalent to assuming that the
deviance residual

rsd ≡ sign(yi − µi)
√
di ∼ N (·, ·). (2.65)

For one parameter EFs such as

ln f(µi; yi) = yiθ − b(θ) + c(yi), (2.66)

the deviance residual has been shown to be the normalizing transformation (Pierce
& Schafer, 1986). In simple problems with a single dispersion parameter, the EQL
allows a GLM to estimate the dispersion parameter using the deviance as the data.
Using the deviance as data, which was discussed above. Unlike the PL, EQL forms
the basis of the joint modeling of structured mean and variance parameters, both of
which are in the GLM framework.

2.5 Generalized Extended Quasi-Generalized Linear Model

Generalized Extended Quasi-Likelihood (GEQL) is used to estimate the GLM pa-
rameters of the mean and variance when the data are over dispersed. Overdispersion
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can result from an insufficient number of covariates, incorrect link specification, or
mis-specified response variable distribution or first and second moments. Some reme-
dies include, for small overdispersion, a known or estimated inflation parameter (φ).
For large overdispersion, modeling the variance function V (µi) is given by Nelder &
Pregibon (1987) and Carroll & Ruppert (1982). For both methods, assumptions are
made of the first and second moments for the mean model and a gamma distribution
is implicitly assumed for the dispersion parameters.

Mean Model Components Dispersion Model Components

Yi ∼ (µi, (ψ − 1)φψ−1i Vτ (µi)
τ ) di ∼ (φi, 2φ

ψ
i )

ηi = xTi β ηdi = gTdiγ
ηi = g(µi) ηdi = gd(φi)

Figure 2.1 The GLM structures for the GEGLMs include a mean model and a
dispersion model.

The GEQL, Q∗, is similar to Q+ in that it does not require full distributional
assumptions for the mean model, i.e., first and second moments for both the mean
model and the dispersion model. EQL is a limiting form of GEQL given by Yanez
(1993)

lim
ψ→2

Q∗ = Q+, (2.67)

making Q∗ a linear function of Q+, similar to Nelder & Pregibon (1987) in which
Q+ is a linear function of Q.

In the definition of Q+, the form of the variance function for dispersion,
namely, VD(φi) = φ2i is implicitly assumed as a gamma random variable. This
is only approximately conrrect for non normal yi. Q∗ adjusts for this via the pa-
rameter ψ. The variance function in Q∗ assumes only a power form indexed by a
parameter ψ so that

VD(φi) = φψi , ψ > 1, (2.68)

with ψ = 2 a special case. Thus, less restrictive extra variation in the mean and
dispersion can be modeled through ψ as it affects the variances of both yi and di
respectively.

The generalization of the EQL to GEQL allows for the fitting of models where
only the form of the first two moments of the mean response and the first two
moments of the dispersion are specified. A broader class of models is available
in the joint modeling framework where only the form of the first two moments of
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the mean the dispersion are needed to fit these two models. By the definition of
the GEQL function, information in the data can assist in selecting the form of the
variance function in the dispersion model in a manner similar to that proposed for
the EQL function of Nelder & Pregibon (1987).

2.6 Joint Generalized Linear Model Estimation

Suppose there are two interlinked models for the mean and dispersion based on the
observed responses y1, y2, . . . , yn, deviance d1, d2, . . . , dn, with model components
as in Figure 2.2. These interlinked models were called Joint Generalized Linear
Models (JGLMs) by Nelder & Pregibon (1987). Note Edi = φi and V ar(di) = 2φ2i
are the dispersion model mean and variance and hence have the same mean-variance
relationship as a gamma distribution. The dispersion model parameters are no longer
constant, but can vary with the mean model parameters. Figure 2.2 displays the
JGLM mean and dispersion submodels structures.

Mean Model Components Dispersion Model Components

Yi ∼ (µi, φiVτ (µi)) di ∼ (φi, 2φ
2
i )

ηi = xTi β ηdi = gTdiγ
ηi = g(µi) ηdi = gd(φi)

Figure 2.2 The GLM structures for the JGLMs include a mean model and a
dispersion model.

The consequence is that the dispersion model values are now needed in the
IWLS algorithm for estimating the regression parameters, and that these values have
a direct effect on the estimates of the regression parameters. The EQL q+ yields a
fitting algorithm, which can be computed iteratively using two interconnected IWLS
procedures:

1. Given γ̂ and the dispersion estimates φ̂i’s, use IWLS to update β̂ for the
mean model;

2. Given β̂ and the estimated means µ̂i’s, use IWLS to update γ̂ with the
deviances as data;

3. Iterate step 1 and 2 until convergence.

For the mean model in the first step, the updated equation is

(XTΣ−1X)β = XTΣ−1z, (2.69)
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where

zi = ηi +
∂ηi
∂µi

(yi − µi) (2.70)

is the adjusted dependent variable and Σ is a diagonal matrix with elements

Σii = φi

(
∂ηi
∂µi

)2

V (µi). (2.71)

Use φi ≡ φ as a starting value, so no actual value of φ is needed. Thus, this
GLM is specified by a response variable y, a variance function V (·), a link function
g(·), a linear predictor ηi, and a prior weight 1/φ.

For the dispersion model, first compute the observed deviances di = d(yi, µ̂i)
using the estimated means. Let d∗i = di/(1−qi) with qi = 0. The REML adjustment
is the GLM leverage for qi described below in the REML procedure for QL models.
The updating formula for γ̂ is

GTΣd
−1Gγ = GTΣd

−1zd, (2.72)

where the dependent variables are defined as

zdi = ηdi +
∂ηdi
∂φi

(d∗i − φi) (2.73)

and Σd is a diagonal matrix with elements

Σdi = 2

(
∂ηdi
∂φi

)2

φ2i . (2.74)

This GLM is characterized by a response d∗i for the deviance residual, a gamma
error, a link function gd(·), a linear predictor ηdi, and a prior weight 1

2(1 − q). At

convergence, the standard error of β̂ and γ̂ can be computed. If the GLM deviance
is used, this algorithm yields estimators using the EQL, while the Pearson deviance
that results are those from the PL.

The deviance components d∗i become the responses for the dispersion GLM.
Then the reciprocal of the fitted values from the dispersion GLM provide the prior
weights of the next iterations for the mean GLM. The resulting back-and-forth
algorithm is very fast to converge. This means that all the inferential tools used for
GLMs can be used for the GLMs for the dispersion parameters.
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2.7 Hierarchical Generalized Linear Models

A class of GLM that combines both fixed effects and random effects is the Hier-
archical Generalized Linear Model (HGLM). The random components may come
from an arbitrary distribution, in one case, the distribution is conjugate to that of
the response vector y. An additional random term in the fixed effects mean sub-
model accounts for clustering in data. For estimation of fixed effects and random
effects, the corresponding joint likelihood is generalized by Lee & Nelder (1996) to
a hierarchical or h-likelihood.

Let yij be the observed response variable for i = 1, . . . , n, j = 1, . . . ,m, and
ui be the unobserved random component. Lee & Nelder (1996) define the following
HGLM, represented in Figure 2.3, utilizing the conditional log-likelihood for yij
given ui with the EF form

`(θ, φ; yij | ui) =
1

aij(φ)
[yijθij − b(θi)] + c(yij , φij), (2.75)

where θij denotes the canonical parameter and φ is the dispersion parameter. Let
µij be the conditional mean of yij given ui, where ηij = g(µij), i.e., g(·) is the
link function for the GLM describing the conditional distribution of yij given ui.
The linear predictor ηij has the form given in Figure 2.3 for some strictly monotonic
function vi = v(ui). Modeling ηij involves fixed effects mean modeling and dispersion
modeling for vi, which describes the overdispersion.

Effect Mean Model Components Dispersion Model Components

Yij | ui ∼ (µij , aij(φ)V (µij)) Not
Fixed ηij = xTijβ + zTi v applicable

ηij = g(µij)

ui ∼ (µRi, ζVR(µRi)) Not
Random applicable

vi = gR(ui)

Figure 2.3 The GLM structures for the HGLMs include a mean model, a
dispersion model, and a random effects model.

As an example, suppose that the distribution of yij given ui is Poisson with
mean µij = E(yij | ui) = µijui. With a a log-link, vi = lnui. If the distribution of
ui is gamma, then the model is called the Poisson-gamma HGLM, with vi has the
log-gamma distribution.
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2.7.1 Hierarchical Likelihood

The systematic component of the model specification that assumes a particular mean
and variance function for an individual response yij conditional on a random effect
ui is

ηij = g(µij) = xTijβ + zTi v. (2.76)

The outcome yij is independently distributed with mean µij and variance φijV (µij),
where aij(φ) = φij .

The marginal variance of yij is

V ar(yij | vi) = E [V ar(yij | vi)] + V ar[E(yij | vi)], (2.77)

= φijE [g(µij)] + V ar(µij). (2.78)

Overdispersion may appear in both the right-hand side terms, the first term accounts
for the contribution of the dispersion family, and the second term is the contribution
of the random effects.

The development of the likelihood for HGLMs is analogous to the development
of likelihoods for GLMs, QGLMs, and EQGLMs. Therefore, the start of development
for HGLMs is with random effects that follow a distribution from the EF, as given
by Lee & Nelder (1996). Consider a HGLM as presented in Figure 2.3, with fully
specified distributions for a response vector y | u. Let the fixed effects dispersion
parameter vector a(φ) = φ, and the random effects mean model parameter vector
be ζ. Note that v = v(u) is the response canonical transformation applied to u.
The joint likelihood for normal models (Henderson, 1975) are generalized to form
the h-likelihood, denoted by h, is

h = `(θ;y | u) + `(θR;v), (2.79)

where θ is the canonical parameter vector for the conditional response distribution
and θR is the parameter vector for the distribution of v (Lee & Nelder, 1996). The
first term of Equation 2.79 is the log-likelihood of the conditional response distribu-
tion, and the second term is the log-likelihood of the random effects distribution of
v. The vector v is estimated as a random effects mean model parameter. As θR is
a parameter in the distribution of v, θR is considered to be a dispersion parameter
vector.

The maximum h-likelihood estimates are derived from maximizing the h-
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likelihood function by solving

∂h

∂β
= 0 (2.80)

∂h

∂v
= 0. (2.81)

These solutions have the advantage that integration of the random effects is not
needed for estimates of the random effects mean model parameters. From the def-
inition of the h-likelihood, Equation 2.79, it is easy to see that the maximum h-
likelihood estimates (MHLEs) for β given u are obtained by the GLM equations
with v(u) as an offset. As such, the IWLS may be used to obtain the maximum
HGLMs (MHLEs). However, an augmented form of the GLM IWLS is used, thereby
permitting the simultaneous determination of both the fixed effects and random ef-
fects mean model parameters (Lee & Nelder, 2006).

The h-likelihood estimation for an HGLM can be viewed as that for an aug-
mented GLM with the response variables (yT , ξT )T , where E(Y | u) = µ, V ar(Y |
u) = φV (µ), E(ξ) = u, and V ar(ξ) = ζVR(u). These statistics are from the
EF individual observation log-likelihoods

∑
[yijθ(µij) − b(θ(µij))]/φij for fixed ef-

fects mean model, and
∑

[ξiθ(ui) − b(θ(ui))]/ζi, with ξi the pseudo-response of the
random effects mean model. The augmented response variables are used with the
augmented linear predictor

(ηT ,vT )T = Tω, (2.82)

where η = Xβ+Zv, v = gR(u), and ω = (βT ,vT )T are fixed, unknown parameters
and quasi-parameters, and the augmented model matrix is

T =

(
X Z
0 I

)
, (2.83)

where I is the m×m identity matrix.

Given (φ, ζ), the estimate of the two components ω = (βT ,vT )T can be
computed by IWLS from the augmented GLM as

T TRΣ−1R TRω = T TRΣ−1R zRa, (2.84)

where zRa = (zT , zTR)T and

ΣR = ΓRW
−1
Ra, (2.85)
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with ΓR = diag(φ1, φ2, . . . , φn, ζ1, ζ2, . . . , ζm). The adjusted dependent variables
zai = (zi, zRi) are defined by

zi = ηi + (yi − µi)
∂ηi
∂µi

, (2.86)

for i = 1, . . . , n, and for j = 1, . . . ,m,

zRj = vj + (ξj − uj)
∂vj
∂uj

. (2.87)

The iterative weight matrix

W a = diag(W−1,W−1
R ) (2.88)

has the elements

W−1i =

(
∂ηi
∂µi

)2

V (µi) (2.89)

and

W−1Rj =

(
∂vj
∂uj

)2

VR(uj). (2.90)

The standard errors of the random effects parameters are obtained as

s.e.(v) =
√
diag{ΣR}. (2.91)

2.7.2 Double Extended Quasi-Likelihood

An extension to the h-likelihood was proposed by Lee & Nelder (2001) that general-
izes the HGLM from distribution specifications for both the fixed effects and random
effects, to requiring only the first and second moments. This relaxed distribution
specification is called the double extended quasi-likelihood (DEQL), and employs
EQLs for both the fixed effects mean model and the random effects mean model
parameter estimation. These HGLMs are known as quasi-HGLMs (QHGLMs) and
the relationships are as in Figure 2.4.

The DEQL derives from the Exponential Family (EF) such that

h+ = q+(θ(µ)),φ;y | u) + q+R(u; ξ) (2.92)



36 CHAPTER 2. LITERATURE REVIEW

Effect Mean Model Components Dispersion Model Components

Yij | ui ∼ (µij , aij(φ)V (µij)) dij ∼ (φij , 2φ
2
ij)

Fixed ηij = xTijβ + zTi v ηdij = gTi γ

ηij = g(µij) ηdij = gd(φij)

ui ∼ (µRi, ζVR(µRi)) dRi ∼ (ζ, 2ζ2)
Random ηdRi = gTdRiδ

vi = gR(ui) ηdRi = gdRi(ζi)

Figure 2.4 The GLM structures for the DHGLMs include a mean model, a
dispersion model, a random effects model, and a random effects dispersion model.

where

q(θ(µ)),φ;y | u) = −1

2

∑
i

{
di
φ

+ ln(2πφV (yi | ui))
}

(2.93)

= −1

2

∑
i

{di + ln(2πV (yi | ui))} , φi = 1, (2.94)

q+R(u) = −1

2

∑
i

{dRi + ln(2πVR(ξi))} , (2.95)

di = 2

∫ yi

µi

yi − s
s

ds, (2.96)

and

dRi = 2

∫ ξi

ui

ξi − s
sψ

ds (2.97)

are the deviance components of y | u and u respectively. The function qR(u; ξ)
has the form of an EQL for the quasi-data ξ. The ξ = (ξ1, ξ2, . . . , ξm)T is an
unobservable random variable whose expected value is the mean parameter u, and
whose dispersion structures is the same form as that of u,

ξ ∼ (u, ζVR(u)). (2.98)

Lee et al. (2006) states that the random effects u are treated as fixed parameters of
the distribution of ξ after the response vector y has been observed.

Lee & Nelder (2001) showed that h+ is equivalent to the first-order Laplace
approximation of the h-likelihood used when the conditional response distribution
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and the random effects distribution are known. The DEQL h+ can be used to
estimate the model mean parameters ω = (βT ,vT )T . These estimates are obtained
by setting the first derivatives of h+ to zero, thus,

∂h+

∂βj
=

n∑
i=1

xij

(
∂µi
∂ηi

)(
yi − µi
φiV (µi)

)
= 0, (2.99)

and

∂h+

∂vk
=

n∑
i=1

zik

(
∂µi
∂ηi

)(
yi − µi
φiV (µi)

)
+

m∑
i=j

Ijk

(
∂uj
∂vj

)(
ξj − uj
ζjVR(uj)

)
= 0, (2.100)

where Ijk is the (j, k)th element of the identity matrix. To estimate the dispersion
parameters, and adjusted profile h+-likelihood procedure is used. For the DEQL,
the adjusted h+-likelihood is

h+a = h+ − 1

2
ln

[∣∣∣∣− 1

2π

(
∂2h+

∂ω

)∣∣∣∣] . (2.101)

Dispersion parameters are estimated using the first derivatives of h+a with cur-
rent estimates of the mean parameters substituted in. Lee & Nelder (2001) showed
that the adjusted profile h+-likelihood is equivalent to the first-order Laplace ap-
proximation of the restricted likelihood used when the marginal response likelihood
is known. Thus, for φi > 0, ζj > 0, gdiγ = γ, and gRdiδ = δ,

∂h+a
∂γ

= γ

n∑
i=1

(1− qi)
(
di − φi
φi

)
= 0, (2.102)

and
∂h+a
∂δ

= δ
m∑
j=1

(1− qRj)
(
dRj − ζj

ζj

)
= 0, (2.103)

where qh = (qT , qTR)T are the diagonal leverage estimates from the mean model

qh = diag(T (T TΣ−1T )−T TΣ−1). (2.104)

The term T is defined in Equation 2.83, Σ is defined in Equation 2.85, di is defined
in Equation 2.96, and dRi is defined in Equation 2.97. Note that the dispersion
model score equations are chosen to have the same form as the mean model score
equations. The iteration algorithm then alternates between the h+ mean model
parameters and the h+a dispersion model parameters.
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2.7.3 Iterated Weighted Least Squares for Double Extended Quasi-
Likelihood

The double extended model can be fitted by solving IWLS estimating equations of
three GLMs as follows:

1. Given (φi, ζj), the two components ω = (βT ,vT )T can be estimated by
Equation 2.84 which are the IWLS equations for the augmented GLM in
Subsection 2.7.1.

2. Given (ω, ζ), γ estimates φi by the IWLS equations

GTΣ−1d Gγ = GTΣ−1d zd, (2.105)

where Σd = ΓdW
−1
d with Γd = diag(2/(1− qi)),

qi = xi(X
TWRX)−1xTi , (2.106)

the weight functions W d = diag(W di) are defined as

W di =

(
∂φi
∂ηdi

)2 1

2φ2i
, (2.107)

and the dependent variables are defined as

zdi = ηdi + (d∗i − φi)
∂ηdi
∂φi

, (2.108)

with GLM deviance components

d∗i =
di

1− qi
, (2.109)

and di is as in Equation 2.96. This GLM is characterized by a response
d∗, gamma error, link function gd(·), linear predictor G and prior weight
(1− q)/2.

3. Given (ω,φ), estimate δ for ζ by the IWLS equations

GT
dRΣ−1dRGdRδ = GT

dRΣ−1dRzdR, (2.110)

where ΣdR = ΓdRW
−1
dR with δ = diag(2/(1 − qdRi); W dR = diag(W dRi)

are defined by

W dRi =

(
∂ζi
∂ηdRi

)2 1

2ζ2i
, (2.111)
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and the dependent variables are defined as

zdRi = ηdRi + (d∗Ri − ζi)
∂ηdRi
∂ζi

, (2.112)

with GLM deviance components

d∗Ri =
dRi

1− qdRi
, (2.113)

and dRi is as in Equation 2.97. The weight qdR extends leverage to
HGLMs. This GLM is characterized by a response d∗dR, gamma error,
link function gdR(·), linear predictor GdR and prior weight (1− qdR)/2.

Let the observed response vector with elements yij have mean µij and g(µij) =
xTijβ+ zTi v. Given initial values of β0 and v0, the EF log-likelihood can be approx-
imated by

− 1

2
ln |Σ| − 1

2
(Y −Xβ −Zv)TΣ−1(Y −Xβ −Zv), (2.114)

where Y is a working vector with elements

Yij = xTijβ
0 + zTi v

0
i +

∂h

∂µij
(yij − µ0ij), (2.115)

and Σ is a diagonal matrix of the variance of the working vector with elements

Σii =

(
∂h

∂µij

)2

φv(µ0ij), (2.116)

where φv(µ0ij) is the conditional variance of yij given vi. The derivative ∂h/∂µij is
also evaluated at the current vectors values of β and v.

If the random effects parameter vector v is assumed normal with mean zero
and variance D = D(θ), the log-likelhood has the familiar normal-based formula:

`(β,θ,v) = −1

2
ln |Σ|−1

2
(Y −Xβ−Zv)TΣ−1(Y −Xβ−Zv)−1

2
ln |D|−1

2
vTD−1v.

(2.117)

This yields the usual mixed model equations to update β and v:(
XTΣ−1X XTΣ−1Z

ZTΣ−1X ZTΣ−1Z +D−1

)(
β
v

)
=

(
XTΣ−1Y

ZTΣ−1Y

)
(2.118)
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The IWLS is used to find the solution. The iteration continues by recomputing Y
and Σ. Hence the computation of estimates in HGLM involves repeated applications
of normal-based formulae.

If v is not normally distributed, an extra step is needed first to approximate

its log-likelihood by a quadratic form. Let ui
iid∼ (µRi, ζVR(µRi)), vi = gR(ui) for

some gR(·), and `(vi) = ln gR(ui). Using the initial value v0i

ln gR(ui) ≈ ln gR(uci ) +
1

2
`′′(v0i )(vi − vci )2, (2.119)

where

vci = v0i −
`′(v0i )

`′′(v0i )
. (2.120)

Now let D−1 = diag[−`′′(v0i )], the Fisher information matrix of v based on gR(·),
and let `′(v0) be the vector of `′(v0i ), so in vector notation

vc = v0 +Dl′(v0). (2.121)

Then,

`(v) = `(vc)− 1

2
(v − vc)TD−1(v − vc). (2.122)

In the normal case D is the covariance matrix, and vc = 0.

After combining this with the quadratic approximation of `(y|u), then taking
the derivatives with respect to β and v and finding the updating equation(

XTΣ−1X XTΣ−1Z

ZTΣ−1X ZTΣ−1Z +D−1

)(
β
v

)
=

(
XTΣ−1Y

ZTΣ−1Y +D−1vc

)
. (2.123)

This is similar to 2.118, except for the term D−1vc.

As in the normal case, the approximate MLEs of β, θ, and v are the joint
maximizers of

q(β,θ,v) = `(β,θ,v)− 1

2
ln |ZTΣ−1,Z +D−1|. (2.124)

To derive an iterative estimation procedure the first term is approximated by a
quadratic form of Equation 2.117. However, in contrast with the normal mixed
models, because of the dependence of Σ on β and v. An iterative algorithm is:
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1. Compute β̂ and v̂ given θ by solving Equation 2.118.

2. Fixing β and v at the values β̂ and v̂, update θ by maximizing q.

3. Iterate between steps 1 and 2 until convergence.

The derivative of `(β,θ,v) with respect to β is

∂`

∂β
= XTΣ−1(y −Xβ −Zv). (2.125)

Combining this with the derivative with respect to v and setting them to zero, gives
Equation 2.118. Equation 2.118 suggest the that the estimation of β and v may be
calculated by computing the marginal variance V or its inverse. Rather, this is given
by the iterative back fitting algorithm (Gauss-Seidel method). In the algorithm, β
and v are computed in as follows:

1. Start with an estimate of β, for example, the ordinary least-squares esti-
mate

β̂ = (XTX)−1XTy, (2.126)

then iterate between steps 2 and 3 below until convergence.

2. Compute a corrected outcome

yc = y −Xβ̂ (2.127)

and estimate v from a random effects model

yc = Zv, (2.128)

based on
(ZTΣ−1Z +D−1)v = ZTΣ−1yc. (2.129)

3. Recompute a corrected outcome

yc = y −ZV (2.130)

and estimate β from a fixed effects model

yc = Xβ, (2.131)

which updates β̂ from the solution of

(XTΣ−1X)β = XTΣ−1yc. (2.132)
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2.8 A Deviance-Based Criterion for Generalized Liner
Model Selection

The use of deviance to determine model parameters is most recently explored by
Sakate & Kashid (2012). It is important to note that, while the following is useful
for model selection and link function identification, there is no component that
allows for the characterization of a random effects power function mean-variance
relationship exponent.

Sakate & Kashid (2012) have devised a deviance-based criterion (DBC) for
GLM selection. The DBC is obtained by penalizing the difference between the
deviance of the fitted model and the full model. Under certain conditions, DBC
is shown to be a consistent model selection criterion, where the selected model
asymptotically equals the optimal model relating response and predictors. The
DBC is used to identify models with the appropriate mixes of predictors, and to
help identify appropriate link functions.

The deviance is a function of the data only and is used to define a statistic for
model selection. Let D(y, β̂) denote the deviance of the full model. If the difference
in deviance of a model, say Ma and the full model D(y, β̂a −D(y, β̂) is small, then
the model Ma can be regarded as good as the full model for prediction. This does
not serve for model selection as for the model Ma such that a∗ ⊃ a, the difference
is smaller than that for the model Ma, and is zero when a corresponds to the full
model. Thus, it is difficult to identify an optimal model. A good model selection
criterion should take into account goodness-of-fit as well as the complexity of the
model. The number of parameters, pa, is a natural measure of model complexity.
Therefore Sakate & Kashid (2012) define a model selection criterion for GLMs based
on the penalized difference between deviance of model Ma and the full model. The
DBC can be expressed as

DBC(Ma) =
1

φ
D(y, β̂a −D(y, β̂)− (k − pa) + C(n, Pa), (2.133)

where φ is the dispersion parameter and is either known or estimated. Under normal-
ity of the response and C(n, pa) = pa, the criterion in Equation 2.133 is equivalent
to Mallow’s Cp.

The DBC defined in Equation 2.133 may be used for model selection when the
true link function is known. If the link function is unknown and is to be selected
from a finite set of continuous monotone link functions, the DBC in Equation 2.133
cannot be used as it contains the full model deviance. Let g ∈ G be on of the
finitely many link functions in G, and let Mb be the GLM when the link function



2.8. A DEVIANCE-BASED CRITERION FORGENERALIZED LINERMODEL SELECTION43

is g. Denote the mean of the response of the model Mb by µb, and the regression
parameter vector by βb. Then the DBC for model selection when the link function
is unknown is defined as

DBC(Mb) =
1

φ
D(y, β̂b

g
)−D(y, β̂

g∗
)− (k − pa) + C(n, Pa), (2.134)

where D(y, β̂
g
) is the deviance of the full model corresponding to the link function

g∗ ∈ G such that
min
g∈G

D(y, β̂ba) = D(y, β̂
g∗

). (2.135)

Using the term D(y, β̂
g∗

) derives from Pregibon’s (Pregibon, 1981) test for
checking whether a modification to the hypothesized link function is necessary. Both
Sakate & Kashid (2012) and Pregibon (1981) utilize deviance for GLM parameteri-
zation identification.
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Chapter 3

A Random Effects Quasi
Distribution

A random effects quasi distribution with mean µRi and variance µψRi is described
that intends to reduce the conditional response overdispersion of a hierarchical gen-
eralized linear model, and the standard error of the random effects estimates. The
description includes a proposition that addresses the research questions given in
Chapter 1.

3.1 Introduction

Chapters 1 and 2 introduced and expanded on the need to specify either the dis-
tribution of the random effects (REs), or provide the first and second moments of
the random effects in hierarchical generalized linear models (HGLMs). Incorrect
distribution or moments specification can lead to overdispersion in both the mean
models and the dispersion models of the conditional response (CR) and the random
effects (McCullagh & Nelder, 1989) and (Sakate & Kashid, 2012), which are inde-
pendent of each other. The overdispersion is due to inadequate modeling of data
clustering by the random effects. The mean-variance relationships with the lim-
ited development in the generalized linear models (GLMs) literature are the power
function relationships, and biased model parameter estimates are highly likely in
the presence of overdispersion. The literature (Yanez, 1993) and (Yanez & Wilson,
1995) treats power function mean-variance relationships for the dispersion model of
the conditional responses GLMs. The random effects mean model mean-variance

45
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relationship of interest is:

ζVR(µRi) = ζµψRi, (3.1)

where VR(µRi) is the random effects variance function that is dependent on the
mean µRi of the random effects, ζ is the dispersion parameter for the random effects
dispersion model, and ψ is the power function exponent whose value and estimation
method is of interest.

The purpose of this chapter is to describe a method to recover information
from the conditional and random effects model deviance residuals on the value of
the exponent ψ in Equation 3.1, especially when this deviance is overdispersed.
The assumption is that correct specification of the exponent ψ will not result in
overdispersed random effects model deviance, thus minimizing the possibility of
biased random effects mean and dispersion model parameter estimates, as well as
achieving deviance residuals that follow a normal distribution. Recall from that
deviance residuals following a normal distribution is an indication of an adequate fit
of a model to data.

The first step in estimating ψ is to find the expected value of the random
effects mean model deviance, which is dependent on ψ if ψ is the exponent in the
random effects mean-variance relationship. Then this expected value is equated to
the mean of a deviance distribution approximated by a power normal distribution.
The equivalence allows ψ to be found. It will be shown that data are required to
find an empirical estimate of ψ.

Four parts are needed to extract values for the power function exponent ψ of
the random effects mean-variance relationship in Equation 3.1. These components
are: (1) the expected value of the random effects deviance; (2) a suitable approxi-
mating distribution for the random effects deviance; (3) a relationship between the
outcomes of Parts (1) and (2); and (4), initial values for iterative solutions to the
HGLM parameters.

The expected value expression for the random effects deviance of Part (1) will
be obtained in the Deviance Properties section. the Deviance Properties section
also explores the properties of approximating distributions for the random effects
deviance of Part (2). Part (3) establishes an equivalence relationship for the out-
comes in Parts (1) and (2), and is given in the Derivation of the Random Effects
Mean-Variance Power Function Exponent ψ section. Section HGLM IWLS discusses
the generation of iteratively weighted least squares (IWLS) method initial values for
solutions to the HGLM parameters. The following section presents a formal pro-
posal of solutions to the random effects power function mean-variance relationship
exponent ψ.
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3.2 Proposition

Consider the GLM conditional response and random effects mean models, and condi-
tional response and random effects dispersion models from Chapter 1, Figure 1.4, for
individual observations reproduced here in Figure 3.1. The η, ηd, ηR, and ηdR are
the model response means resulting from application of the respective link functions,
g(·), gd(·), gR(·), and gdR(·); xTi and zTi are the ith row vectors of the design matri-
ces for the conditional response mean model and the random effects mean model,
respectively; γ0 and δ0 are the conditional response and random effects systematic
component parameters; and di and dRi are the deviance values for the conditional
response mean model and the random effects mean model, respectively. The con-
cern is when the random effects mean model has a power function mean-variance
relationship as in Equation 3.1, namely, ζVR(µRi) = ζµψRi. The value of ψ must be
estimated to give valid HGLM parameter estimates.

Effect Mean Model Components Dispersion Model Components

Yij | ui ∼ (µij , φijV (µij)) dij ∼ (φij , 2φ
2
ij)

Fixed ηij = xTijβ + zTi v ηdij = γ0
ηij = g(µij) ηdij = gd(φij)

ui ∼ (µRi, ζiµ
ψ
Ri) dRi ∼ (ζi, 2ζ

2
i )

Random ηdRi = δ0
vi = gR(ui) ηdRi = gdR(ζi)

Figure 3.1 HGLM with a power function mean-variance random effects model is
comprised of a conditional response mean model, a conditional response dispersion
model, a power function random effects mean model, and a random effects
dispersion model.

Proposition 3.2.1 The overdispersion from the HGLM conditional response mean
model (Equation 3.2) as represented by the conditional response dispersion model
Equation 3.3, and the overdispersion in the GLM random effects mean model (Equa-
tion 3.4) as represented by the random effects dispersion model Equation 3.5, both
contain information that allow for the estimation of the random effects variance
power function exponent ψ, from Equation 3.1.

Recall that the precedent for using deviance as data was established when the
extended quasi-likelihood allowed a HGLM estimates of the conditional response
mean model dispersion parameter φ (Nelder & Pregibon, 1987). Also, Sakate &
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Kashid (2012) used deviance for goodness-of-fit and link function identification, and
the distribution of ddRi was parameterized as (ζ, 2ζ2). When these elements are
combined with the definition of the random effects deviance dRi, an estimate for ψ
may be found.

To support the proposition, the residuals for HGLMs with random effects
mean model mean-variance relationships as in Figure 3.1 are examined. The fo-
cus is on those characteristics necessary to explore solutions for the random effects
mean-variance relationship exponent, ψ. The expected values of both the condi-
tional response deviance di and the random effects deviance dRi are used. These
expectations are then related to the random effects deviance distributions. The Stu-
dentized (standardized) signed square root form of the deviance residual, Equation
2.16, is commonly used as it is more often approximately normal than the Pearson
residuals. The standardized signed square root form of the deviance residual needs
to be approximately normal when the model fit is adequate. For overdispersed,
right-skewed distributions, the normal distribution must be substituted with a dis-
tribution that approximates the skewness, and at the same time degenerates to a
normal distribution as the overdispersion is reduced by accurately approximating the
mean-variance power function exponent ψ. The power normal distribution is shown
to satisfy these requirements, and is a suitable distribution approximation for the
deviance. The random effects deviance parameters as estimated by the power nor-
mal distribution are related to the expected value of the random effects deviance
dRi. This relationship is shown to provide the estimates of ψ.

3.3 Deviance Properties

In chapters 1 and 2, viable GLM models for data in which as many as four submod-
els, a conditional response mean model, a conditional response dispersion model, a
random effects mean model, and a random effects dispersion model, were presented.
In many cases these models are used to fit data that are overdispersed. While ex-
tended quasi-generalized linear models (EQGLMs) with integer-valued exponents
(Nelder & Pregibon, 1987) and generalized extended quasi-generalized linear mod-
els (GEQGLMs) with relatively unrestricted exponent values (Yanez, 1993) were
discussed for conditional response models with mean-variance relationships as de-
scribed by Equation 2.68. What was lacking was a treatment of data with a random
effects mean model for which the mean-variance relationship is best represented as in
Equation 3.1. As such, this section examines HGLMs, specifically, double extended
quasi-likelihood (DEQL) HGLMs, for which Equation 3.1 applies.

As shown in Chapter 2, Equation 2.97, the deviance dRi for the random effects
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mean model is

dRi = 2

∫ ξi

ui

ξi − s
sψ

ds (3.2)

= 2

[
ξi

1− ψ

(
ξ1−ψ − u1−ψ

)
− 1

2− ψ

(
ξ2−ψ − u2−ψ

)]
, ψ 6= 1, 2.

The expected value of dRi is

E(dRi) = 2

{
1

1− ψ

[
E
(
ξ2−ψi

)
− µ1−ψRi E

(
ξ1−ψi

)]
+

1

2− ψ

[
E
(
ξ2−ψi

)
− µ2−ψRi

]}
(3.3)

= 2

E
(
ξ2−ψi

)
− (2− ψ)µ1−ψRi E(ξi) + (1− ψ)µ2−ψRi

(1− ψ)(2− ψ)

 . (3.4)

Not surprisingly, E(dRi) ∝ f(ψ), and yet the expectation function f(ψ) does not
seem to lend itself to a closed form solution for ψ. It should be noted, that, except
for ψ, all other terms may be observed or estimated from data: for example, the
pseudo-responses ξi are extracted from the IWLS augmented response vector; while
µRi are obtained by averaging the dRi.

To provide estimates of ψ, methods such as maximum likelihood estimation
(MLE) or method of moments estimation (MME) are required. Before either of
these two methods can be employed, the distribution properties of the random effects
deviance must be explored.

Nelder & Pregibon (1987) suggest that, for the conditional response mean
model deviance,

di =

∫ yi

µi

yi − s
s

ds, (3.5)

with E(di) = φ and V ar(di) = 2φ2i , so that

di ∼ (φ, 2φ2)
·∼ gamma(φ, 2φ2), (3.6)

where d̂i = (yi − xTi β̂)2 and φ̂ are found iteratively via IWLS.

For Equation 3.1, due to the power function exponent ψ, the expected value
of the random effects deviance residuals is E(dRi) = ζ, and V ar(dRi) = 2ζ2. Thus,

dRi =

∫ ξi

µRi

yi − s
sψ

ds, (3.7)
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so

dRi
·∼ (ζ, 2ζ2). (3.8)

As stated in Chapter 2, an attribute indicating an adequate fit of data to a GLM is
that the Studentized deviance residuals follow a normal distribution. If this attribute
holds, then

gamma(ζ, 2ζ2)
·∼ N (f(ζ), 2f(ζ)2). (3.9)

This near equivalence of the gamma and normal distributions is not common. As the
gamma distribution is a right-skewed distribution, it is desired to find a right-skewed
distribution that degenerates to a normal distribution as the skewness decreases.

The statistical analysis of many research data often reveal skewed distribu-
tions. Transformations like the Box-Cox transformation (Box & Cox, 1964), are
applied to the data to render them more tractable to the ordinary normal theory
analysis. The power normal (PN) distribution (Freeman & Modarres, 2006a), (Free-
man & Modarres, 2006b), and (Maruo et al., 2011) is one that specifies observation
parameterization prior to transformation. This power normal distribution parame-
terization prior to transformation is just what is needed to characterize the random
effects deviance, and is described below.

As stated in Chapter 2, the power normal distribution parameters are usually
estimated under the assumption that the transformed distribution is normal. This
typically is not a problem when the intent is to achieve an approximately normal
distribution from the transformed data, such as to find a power function exponent ψ
from an overdispersed random effects model with a mean-variance relationship as in
Equation 3.1. Maruo et al. (2011) state difficulties arise when identifying the power
normal distribution on the original scale of the observations, in this case, the random
effects deviance dRi. The estimators of the power normal distribution percentiles, for
example, based on the likelihood estimation method, are not consistent estimators.
Therefore, it is necessary to find unbiased and consistent parameter estimates and
functions of the the parameter estimates when the parameters are determined under
the assumption that the transformed distribution is a normal distribution.

As the MLEs of the parameters of the PN distribution are not asymptotically
consistent (Maruo et al., 2011), (Freeman & Modarres, 2006a) and (Freeman &
Modarres, 2006b) provide useful forms for the moments of a PN distribution for
which the series approximation of the first moment, µ, is

µ = EX1 =

{
(λY + 1)

1
λ (1− λ2) , λ 6= 0,

exp(µ+ σ2/2) , λ = 0,
(3.10)
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where X is a random variable and Y is defined as

Y =

{
Xλ−1
λ , λ 6= 0,

ln(X) , λ = 0,
(3.11)

and λ is the transformation parameter (Box & Cox, 1964).

The series approximation for the first moment of the PN distribution now is
applied to the HGLM random effects deviance, and the corresponding properties are
examined.

3.4 Derivation of the Power Function Exponent ψ

Pierce & Schafer (1986) state that GLM deviance residuals are used to identify
poorly fitting observations, to plot to examine for the effects of potential new co-
variates or nonlinear effects of those already used to fit the GLM, to combine them
into overall goodness-of-fit tests, and as components for case-influence diagnostics.
The standardized signed square root form of the deviance residual, Equation 2.16,
is commonly used as it is more often approximately normal than the Pearson resid-
uals (Chapter 2). It was stated above that the deviance residuals, dRi, follow an
approximate gamma distribution, and that it needs to degenerate to a normal distri-
bution when the model fit is adequate. Also, it was indicated that for right-skewed
gamma distributions, the normal distribution must be substituted with a distribu-
tion that approximates the skewness, and must degenerate to a normal distribution
as the overdispersion is reduced by accurately approximating the power function
mean-variance relationship quasi distribution exponent ψ.

If a gamma distribution is to converge to a normal, by the Central Limit
Theorem, the number of observations must be large. The number of observations
used to construct a HGLM may not be large enough to allow the normal distribution
to approximate the gamma distribution. The PN is immune to small sample size,
skewed model residuals, and degenerates to a normal distribution. In addition,
HGLM Studentized residuals may exhibit truncation, particularly in the lower tail
of the distribution, and the PN provides a suitable model.

The power normal distribution was shown to satisfy the skewness, truncation,
and degeneracy requirements. Thus,

dRi ∼ gamma(ζ, 2ζ2)
·∼ PN (λ, 2ζ3, 2ζ5). (3.12)

It remains to equate the expected value of the random effects deviance residuals
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to the first moment of the power normal distribution. This equation will permit
estimation of the power function exponent ψ.

First, the random effects deviance residuals parameter notation needs to be
used in the first moment in Equation 3.10 such that:

E(dRi) = 2ζ3 = (λdλi + 1)
1
λ (1− λ2), (3.13)

where dλi = (dλRi−1)/λ, λ 6= 0. Here, dλi is substituted for Y and dRi is substituted
for X in the power normal distribution development in Chapter 2.

Next, the expected value of the random effects deviance residuals is equated
to the first moment expression. Therefore,

2

[
E(ξ2−ψ)− (2− ψ)µ1−ψRi E(ξi) + (1− ψ)µ2−ψRi

(1− ψ)(2− ψ)

]
= (λdλi + 1)

1
λ (1− λ2). (3.14)

With the exception of the parameter ψ, all variables and parameters are either
observed or estimated. For example, E(ξi) may be estimated from the IWLS pseudo-
response values by averaging, i.e., ξ̄, as can µRi. As such, iterative methods can
be employed to estimate ψ. Bootstrap confidence intervals then can be obtained.
Estimating ψ and the corresponding confidence intervals are the subject of the next
chapter.

To obtain an estimate of ψ, it is clear from Equation 3.14 that an estimate for λ
is required. The practical method to estimate λ is to use the Box-Cox transformation
(BCT) on the first iteration of the random effects model deviance residuals dRi such
that dλi = dλRi as used in Equations 3.13 and 3.14. An additional feature of the BCT

is the generation of a confidence interval (CI) about λ̂, which is commonly found in
statistics packages such as the R statistical package (R Core Team, 2012). This CI
may be used to simplify ψ in cases for,

0⊕ 1

2
⊕ 1⊕ 2 ∈ [CIlow, CIhigh] (3.15)

where ⊕ is the symbol for exclusive or. Then,

ψ ∼


N (·, ·) , ψ = 0

Beta(·, ·) , ψ = 1
2

gamma(·, ·) , ψ = 1, 2.

(3.16)

These cases are in common use, and shall be discussed no further than has already
appeared in Chapter 2.
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3.5 IWLS for Hierarchical Generalized Least Squares

The implementation of the DEQL IWLS in Chapter 2 iteratively solves for the pa-
rameters of the four submodels of the HGLM. A conditional response mean model
provides estimates of the conditional response parameters β, and provides weights
to the conditional response dispersion model. The conditional response mean model
is dependent on the random effects mean model parameter estimates and hence,
solutions to the random effects mean model affect the conditional response mean
and dispersion model parameter estimates. Current implementations of the ran-
dom effects mean model parameter estimates are determined independently of the
conditional response mean and dispersion models. The random effects mean model
supplies weights to the random effects dispersion model for estimating the dispersion
model parameters.

Therefore, IWLS is used to approximate MLEs for the parameters of all four
submodels, which thereby give solutions for the HGLM overall. The IWLS requires
initial values to begin the iteration process. The initial values germane to solutions
of the random effects mean and dispersion models are problematic for random effects
with a power function mean-variance relationship. Current implementations such as
the R hglm package (Ronnegard, Shen & Alam, 2010) assign a value of either 0 or 1 to
the pseudo-response ξi, and these values are specific to the normal distribution and
the gamma distribution, respectively. An initial value of 1

2 is used for random effects
that follow a beta distribution, but this generally is applicable when the conditional
response model response follows the conjugate binomial distribution, which is not
treated here. SAS/STAT R© software (SAS, 2011) has an option in PROC GLIMMIX
for a conditional response GLM to be fitted initially to obtain starting values for
the fixed-effects parameters. Given the fixed-effects estimates, starting values for
the covariance parameters are computed by a MIVQUE0 step (Goodnight, 1978).
For METHOD=QUAD, pseudo-likelihood updates are generated to improve on the
estimates and to obtain solutions for the random effects models. Chapter 4 develops
of a method for choosing the initial values for the random effects pseudo-response, ξi,
that utilize a similar self-starting capability for random effects that follow a power
function mean-variance relationship, .

Briefly, to find viable initial values for the random effects pseudo-response
ξi, recall that the conditional response model deviance, dij , is a function of the
random effects predictors ZT

i vi. Therefore, dij contains information pertaining to
ξi, especially when φ > 1, i.e., when the dij are overdispersed. Thereby, E(dij) is
connected to the variance multipliers in the mean models, whose variance involves
ψ. Then the initial values of ξi can be derived from dij , namely, E(dij) become the
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seed values for the ξi in the IWLS. After iteration convergence of the IWLS, the
random effect deviance, dRi, provides information on ψ such that

ψ ∝ f(ui, ζ, dRi), (3.17)

from which estimates for ψ may be derived as indicated by Equation 3.14. Hence,
using both dij and dRi, an estimate of ψ may be found. The algorithms to find ψ
follow in Chapter 4.



Chapter 4

Exponent ψ Estimation And
Efficacy

This chapter describes the methods of estimating the random effects power func-
tion mean=variance quasi distribution exponent ψ. This description is followed
by a comparison of the normal, gamma, and quasi distributions. The comparison
demonstrates the efficacy of the quasi distribution when used on three selected data
sets.

4.1 Introduction

The construction of generalized linear models (GLMs) can include a response con-
ditional on random effects which group the responses into clusters of homogeneous
variance. This conditional response may exhibit overdispersion that can result from
misspecification of the explanatory variables or from misspecification of the random
effects distributions. Additionally, overdispersion on the random effects, indepen-
dent of the conditional response overdispersion, is possible. Thus, four submodels, a
conditional response sub-model, a conditional response dispersion submodel, a ran-
dom effects submodel, and a random effects dispersion submodel, may be assembled
to form a joint generalized linear model adequate to characterize the conditional
responses.

The conditional response of interest in this dissertation is counts data that are
assumed to follow a Poisson distribution, though these data may be overdispersed.
Overdispersed conditional responses may be modeled by a linearizing transformation

55
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on the parameters of the explanatory variables, as may the random effects which
cluster the conditional response. This research focuses particularly on modeling the
overdispersion of the conditional response.

The random effects model deviance residuals are assumed to be estimated
by the first moment of a power normal distribution parameterized by a truncation
parameter, λ, a mean parameter, µRi, such that the random effects pseudo-response
expected value is E(ξi) = µRi. The dRi is the ith random effects model deviance
residual. The expected value of dRi was shown in Chapter 3 to be

E(dRi) = 2

[
E(ξ2−ψi )− (2− ψ)µ1−ψRi E(ξi) + (1− ψ)µ2−ψRi

(1− ψ)(2− ψ)

]
, ψ 6= 1, 2, (4.1)

where ξi is the pseudo-response in the random effects model. The power normal first
moment approximation of the mean parameter also was shown in Chapter 3 to be

µRi = (1− λ2)dRi, (4.2)

where λ is obtained from a Box-Cox transformation on the deviance residuals from
the HGLM random effects with conditional response following the Poisson distribu-
tion, and the random effects following the gamma distribution, which is the conjugate
distribution to the Poisson distribution.

Recall that ψ is the exponent in the power function mean-variance relationship
such that

V (µRi) = µψRi, (4.3)

where V (µRi) is the variance of the quasi distribution with mean µRi. It is the
exponent ψ that will be estimated, and thereby allow testing of the efficacy of a
quasi distribution, (µRi, µ

ψ
Ri), to describe the random effects.

Chapter 1 presented research questions regarding the estimation and efficacy
of use of the quasi distribution for the random effects. The questions are whether
the exponent in the quasi distribution may be estimated, and will the quasi distribu-
tion assumption for the random effects reduce the overdispersion of the GLM more
than when assuming either a normal or gamma distribution for the random effects?
Further, are the quasi distribution estimators for the random effects improved over
the normal and gamma distribution estimators? Answers to these questions will be
obtained in this chapter.

Before the quasi distribution may be evaluated against the normal and gamma
distribution assumptions for the random effects, the exponent ψ must be estimated.
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This is the subject of the Section “Solutions of the Quasi Distribution Exponent ψ”.
Once ψ is estimated, specific data sets are required to make the comparisons among
the normal, gamma, and quasi distributions. The Section “Data Sets” describes
the data used in the assessment. Following the data sets descriptions is the Section
“Comparative Assessment of the Quasi Distribution”, which provides the analyses
comparing the normal, gamma, and quasi distribution random effects estimates.
The final section, “Summary”, gives an overview of the assessment findings.

4.2 Solutions of the Quasi Distribution Exponent ψ

The first research question to answer is whether the power function mean-variance
relationship quasi distribution exponent can be estimated. This is the topic of this
section.

To find a solution for the quasi distribution exponent ψ, the equation relating
the expected value of the random effects deviance residuals to the first moment
approximation of the power normal distribution mean is rewritten as:

2

{
E(ξ2−ψi )− (2− ψ)[E(ξi)]

1−ψ + (1− ψ)[E(ξi)]
2−ψ

(1− ψ)(2− ψ)

}
= (1− λ2)dRi, ψ 6= 1, 2,

(4.4)

where ξi is the ith random effects pseudo-response in the iterated weighted least
squares equations, E(ξi) = µRi for µRi is the ith random effects mean, dRi is the ith

deviance residual from a Poisson-gamma HGLM, λ is the truncation parameter in
the power normal distribution which is estimated from the Box-Cox transformation
on the random effects deviance residuals, and ψ is the quasi distribution exponent
requiring a solution.

Equation 4.4 has one problematic term that needs attention before a solution
for ψ is possible. This term is E(ξ2−ψi ), and appears intractable even though values
for ξi are available. Two methods are used in this work to find a solution for ψ: a
closed form approximation which uses a Taylor approximation for E(ξ2−ψi ), and a
nonlinear, empirical estimation of ψ, which also uses the Taylor approximation for
E(ξ2−ψi ).

Closed Form Estimation of ψ

A closed form solution for the quasi distribution exponent ψ may be obtained by
applying the Taylor series to E(ξ2−ψi ) in Equation 4.4. If a function of a random
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variable X, say H(X), can be expanded in a Taylor series, then an expression for
the approximate mean and variance of H(X) can be obtained in terms of the mean
and variance of X. See, for example, Bain & Engelhardt (1992).

Suppose H(X) is infinitely differentiable on an open interval containing E(X).
The function H(X) has a Taylor approximation about the mean µ of X as

H(X)
.
= H(µ) +H ′(µ)(x− µ) +

1

2
H ′′(µ)(x− µ)2, (4.5)

where H ′(µ) is the first derivative of H(µ), and H ′′(µ) is the second derivative of
H(µ). This suggests the approximations

E [H(X)]
.
= H(µ̂) +

1

2
H ′′(µ̂), (4.6)

and

̂V ar[H(X)]
.
= [H ′′(µ̂)]2. (4.7)

Note that the expected value of (x− µ) = 0, so the terms with H ′(µ) are zero.

So, for ξi = X, ξ2−ψi = H(X), E(ξ) = ξ̄ which is the average of the pseudo-
response values ξi, and using the Taylor approximation about µ̂,

E(ξ2−ψi )
.
= ξ̄2−ψ +

1

2
(ξ̄2−ψ)′′V ar(ξi). (4.8)

The second derivative of ξ2−ψi is

(ξ̄2−ψi )′′ = [(ξ̄2−ψ)′]′

= [(2− ψ)ξ̄1−ψ]′ (4.9)

= (1− ψ)(2− ψ)ξ̄−ψ.

Then

E(ξ2−ψi ) = ξ̄2−ψ +
1

2
[(1− ψ)(2− ψ)ξ̄−ψ]V ar(ξi). (4.10)

With an expression for the problematic term, E(ξ2−ψi ), Equation 4.4 may be
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simplified. Let A = E(ξi), a = 1− ψ, and b = 2− ψ, then

2

{
E(ξbi )− b ·Aa + a ·Ab

ab

}
= 2

{
E(ξbi ) + (a− b)Ab

ab

}
= 2

{
E(ξ2−ψi )− [E(ξi)]

2−ψ

(1− ψ)(2− ψ)

}

= 2

{
E(ξ2−ψi )− ξ̄2−ψ

(1− ψ)(2− ψ)

}
(4.11)

.
= 2

{
[ξ̄2−ψ 1

2(1− ψ)(2− ψ)ξ̄−ψV ar(ξi)]− ξ̄2−ψ

(1− ψ)(2− ψ)

}

= 2

{
1
2(1− ψ)(2− ψ)ξ̄−ψV ar(ξi)

(1− ψ)(2− ψ)

}
= ξ̄−ψV ar(ξi).

Note that this closed form approximation no longer requires that ψ 6= 1, 2.

Using this approximation and defining d̄R as the average of the random effects
deviance residuals, Equation 4.4 may be rewritten as

ξ̄−ψV ar(ξi) = (1− λ2)d̄R, (4.12)

where d̄R may be substituted for dRi as the deviance residuals are considered inde-
pendent.

Therefore, the closed form solution for the quasi distribution exponent ψ is

ψ̂ =
ln[V ar(ξi)]− ln(1− λ̂2)− ln(d̄R)

ln(ξ̄)
, (4.13)

for ξ̄ > 0, d̄R > 0, and −1 < λ̂ < 1. So, with new restrictions on the independent fac-
tors for ψ̂, a closed form approximate solution for the power function mean-variance
relationship quasi distribution exponent is obtained. In addition, a confidence in-
terval for this closed form solution may be found from the supporting data, ξi, by
using bootstrap resampling.

Empirical Estimation of ψ

The implementation of an empirical method to find a solution for the quasi dis-
tribution exponent ψ utilizes the Taylor approximation described in the previous
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subsection. Equation 4.4 is modified to

ξ−ψi V ar(ξi) = (1− λ̂2)dRi, (4.14)

where the means ξ̄ and d̄R are substituted with ξi and dRi, respectively, again as
these data are assumed independent.

Equation 4.14 is algebraically manipulated to obtain a form suitable for non-
linear regression:

dRi =
V ar(ξi)

1− λ̂2
ξ−ψi , − 1 < λ̂ < 1. (4.15)

Note that in this form, the random effects deviance residuals, dRi, are treated as
the response variables, and the pseudo-responses, ξi are treated as the predictors.
Thus, the empirical nonlinear solution for ψ is algorithmically represented as

dRi = aξ−ψi , (4.16)

where a = V ar(ξi)/(1 − λ̂2). The commonly used algorithms in current statistical
packages provide a confidence interval for the nonlinear regression estimate of ψ.

Algorithms for Estimating ψ

Iterated weighted least squares (IWLS), as described in Chapter 2, is used to find
solutions to GLMs with random effects, known as hierarchical generalized linear
models. IWLS solutions are needed to find estimates of the quasi distribution ex-
ponent ψ, namely, the pseudo-response ξi and the random effects deviance residuals
dRi used in the closed form and empirical methods above. However, the IWLS imple-
mentations of the various available statistical packages do not allow the specification
of the quasi distribution for the random effects. As such, either an original IWLS
implementation must be created, or an existing implementation must be modified.

The package hglm (Alam, Ronnegard & Shen, 2010), available from the Com-
prehensive R Archive Network (R Core Team, 2012), implements the IWLS for hier-
archical generalized linear models described by Lee & Nelder (1996). The IWLS fits
GLMs with random effects where the random effects must follow a normal, gamma,
beta, or inverse-gamma distribution. The hglm package produces estimates of any
fixed effects, random effects, and variance components, as well as their standard
errors. The hglm output includes model diagnostics such as deviance components
leverages and diagnostic plots.

The fitting algorithm (Lee et al., 2006) is summarized as follows:
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1. Initialize starting values.

2. Construct an augmented response vector such that

ya =

(
y
ξ

)
, (4.17)

where ya is the augmented response vector, y is the conditional response
vector, and ξ is the pseudo-response for the random effects as described
and used in the earlier subsections.

3. Use a GLM to estimate initial values of the conditional response model
parameters β and the random effects parameters v, given the conditional
response dispersion parameter φ, and the random effects dispersion pa-
rameter ζ. Save the deviance components and leverages from this initial
fitted model.

4. Use a di ∼ gamma(·, ·) GLM to estimate βd from the conditional response
deviance residuals and their associated leverages qi (IWLS leverages from
Chapter 2), where these deviance components are from step 3). The
gamma GLM is a random intercept model. Update the dispersion param-
eter by setting φ equal to the predicted response vector from this step 4
model.

5. Use a similar GLM to step 4 to estimate ζ from the random effects de-
viance residuals again obtained from the step 3 GLM.

6. Iterate steps 3 to 5 until convergence.

While the necessary components for the IWLS are present in the hglm package,
two important elements are not made available or not implemented, so solutions for
ψ may not be found without modifying the package. The first element that is not
made available is the pseudo-response ξi of the random effects from the augmented
response vector shown in step 2. The hglm scripts were modified to return ξi in
the output as a variable named xi. This variable then is used to estimate both the
closed form and empirical estimates of ψ.

The second element that needs implementation in the hglm scripts is the recog-
nition and execution of quasi distributions for the random effects. The R package
has provision to construct a quasi distribution according to a user’s specifications: in
this case, a quasi distribution with a power function variance, V (µ) = µψ and a log
link function. With the random effect distribution family defined as a quasi distri-
bution, the hglm scripts were modified to recognize and initialize the power function
mean-variance relationship quasi distribution family. Execution of the hglm scripts
then proceeds normally.
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Testing of the modified hglm, named ghglm, was on several existing data sets,
used by statistics packages as examples procedure or function use, to assure the
ghglm output matched exactly the output of hglm. The tests and final execution of
ghglm using the random effects quasi family definition used λ̂ as the initial value of
ψ. Convergence was realized in the same number of iterations as those of the usual
normal and gamma distributions when these distributions were used for the random
effects.

The efficacy of the closed form and empirical solutions for ψ, as implemented
in ghglm, is examined by subjecting them to three data sets. What follows is a
description of these three data sets.

4.3 Data Sets

Chapter 1 introduced three data sets that were chosen to assess the efficacy of using
a power function mean-variance relationship quasi distribution for random effects in
hierarchical generalized linear models. These data sets were subjected to the ghglm
scripts that were modified from the original Alam et al. (2010) hglm package to
handle quasi distributions.

Two of the data sets have been used in the literature for model comparisons
between competing analyses. They are the fabric data of Bissell (1972), and the
rats data of Myers & Montgomery (2002). Both these data sets have random effects
that require estimation.

The third data set is sunspot counts data supplied by the American Associa-
tion of Variable Star Observers Solar Section, and is the motivating data set for this
quasi distribution research.

In this dissertation, the data sets are analyzed in three hierarchical GLMs that
assume the random effects first are normally distributed, then gamma-distributed,
and then distributed as a power function quasi distribution. The outcomes are
reported in the next section, while descriptions of the three data sets follow.

Fabric Data

Bissell (1972) presents data for which the number of faults, Yij , in a bolt of fabric
is dependent on the random effect of the distance between faults. The conditional
response Yij is the number of faults in a bolt of fabric. There are no fixed effects
other than a random intercept, β. The random effects design matrix is zi, which
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is a design matrix of distances, ui between faults, transformed as vi = ln(ui). The
random effect ui was modeled by Lee & Nelder (2000) as a normal distribution, but
is shown in Figure 4.1 as a power function quasi distribution.

Effect Mean Model Components Dispersion Model Components

Yij | ui ∼ (µij , φijµij) dij ∼ (φij , 2φ
2
ij)

Fixed ηij = β + zTi v ηdij = γ0
ηij = ln(µij) ηdij = d)ij

ui ∼ (µRi, ζiµ
ψ
Ri) dRi ∼ (ζi, 2ζ

2
i )

Random ηdRi = δ0
vi = ln(ui) ηdRi = dRi

Figure 4.1 Fabric data HGLM with a power function mean-variance random effects
model is comprised of a conditional response mean model, a conditional response
dispersion model, a power function random effects mean model, and a random
effects dispersion model.

Rat Data

Three chemotherapy drugs were applied to thirty rats that had induced leukemia.
White and red blood cell counts were collected as covariates and the conditional
response, Yij , is the number of cancer cell colonies. The data were collected on each
rat at four different times. Myers & Montgomery (2002) analyzed these data first
under the assumption of no within-rat white cell count correlation, and then with
correlated white cell count. This dissertation considers only the first, uncorrelated
case.

Among the three covariates, drug, white blood cell count, and red blood cell
count, drug is a between-rat covariate, while the white and red blood cell counts
are within-rat covariates. Figure 4.2 shows that xij is the design matrix of drug
treatment, white blood cell count, and red blood cell count. The matrix zi is the
random effect design matrix of a function of the white blood cell count. The random
effects was modeled by Lee et al. (2006) as both a normally distributed effect and
as a gamma-distributed effect where vi is a polynomial function in white blood cell
count with intercept γ0. The figure depicts the random effects function as a power
function quasi distribution.
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Effect Mean Model Components Dispersion Model Components

Yij | ui ∼ (µij , φijµij) dij ∼ (φij , 2φ
2
ij)

Fixed ηij = xTijβ + zTi v ηdij = γ0
ηij = ln(µij) ηdij = d)ij

ui ∼ (µRi, ζiµ
ψ
Ri) dRi ∼ (ζi, 2ζ

2
i )

Random ηdRi = δ0
vi = ln(γ0 +Wi +W 2

i ) ηdRi = dRi

Figure 4.2 Rat data HGLM with a power function mean-variance random effects
model is comprised of a conditional response mean model, a conditional response
dispersion model, a power function random effects mean model, and a random
effects dispersion model.

Sunspot Data

The sunspot data analysis was the motivation for this research on power function
quasi distributions. Obtaining an accurate sunspot number with observer as a ran-
dom effect proved challenging, leading to modeling observer with a quasi distribu-
tion.

The American sunspot number was developed during World War II when
United States scientists could no longer access the historically-used Zurich sunspot
numbers (Shapley, 1949). The American sunspot number is a relative index of
sunspot activity, and has been recorded by the American Association of Variable Star
Observers (AAVSO) Solar Section since its inception in 1944. Shapley (1949), Taylor
(1985), and Schaefer (1993) provide descriptions of the traditional method of sunspot
counts data reduction. AAVSO observer-supplied daily sunspot counts arrive at the
Solar Section as sets of date- and time-stamped values which are converted to a
sunspot number known as the Wolf number after its developer R. Wolf (Shapley,
1949) such that:

w = 10g + s, (4.18)

where w is the Wolf number, g is the count of sunspot groups, and s is the total
count of sunspots on a given day. Taylor (1985) states that the sunspot grouping
(g) scheme is the evolutionary classification system outlined by Waldmeier (1961).
The traditional data reduction method involves weighted least-squares regression
parameter adjustments to a logarithmically transformed w to account for variations
in the observers’ counts. The variations in observer counts is due to such factors
as seeing condition and observer experience. These factors are handled implicitly
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in the regression. The log-transformed w often still is right-skewed, and analysts
arbitrarily truncate this skewness in an attempt to emulate normally-distributed
data. This leaves the sunspot number accuracy questionable.

The GLM approach, displayed in Figure 4.3, uses a conditional response model
where Yij is the Wolf number w from Equation 4.18. The fixed effects design matrix,
xij , is the matrix of seeing condition, observer experience, year and month of the
observation, and zi is the random effect design matrix of observer identifiers. The
random effects model is shown in the figure as a power function quasi distribution.

Effect Mean Model Components Dispersion Model Components

Yij | ui ∼ (µij , φijµij) dij ∼ (φij , 2φ
2
ij)

Fixed ηij = xTijβ + zTi v ηdij = γ0
ηij = ln(µij) ηdij = d)ij

ui ∼ (µRi, ζiµ
ψ
Ri) dRi ∼ (ζi, 2ζ

2
i )

Random ηdRi = δ0
vi = ln(ui) ηdRi = dRi

Figure 4.3 Sunspot data HGLM with a power function mean-variance random
effects model is comprised of a conditional response mean model, a conditional
response dispersion model, a power function random effects mean model, and a
random effects dispersion model.

Data Sets Summary

Each of these three data sets, fabric, rats, and sunspots, has a conditional response
consisting of counts, and a random effect which influences the GLM overdispersion
both in the conditional response and in the random effect to varying degrees depend-
ing on the data set. The next section is an analysis of the changes in overdispersion,
random effects standard errors, and model diagnostic plots when the random ef-
fects in each data set are analyzed as following a normal distribution, a gamma
distribution, and a power function mean-variance relationship quasi distribution.

4.4 Comparative Analysis of the Quasi Distribution

The fabric, rats, and sunspots data sets, described above, each are modeled with
their respective random effects assuming each of three distributions. These three
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distributions are the normal distribution, the gamma distribution, and the power
function mean-variance relationship quasi distribution. These distributions will of-
ten be referred to as the three distributions going forward. For each data set, the
power normal distribution truncation parameter, λ, and its 95% confidence inter-
val is given. Then the power function quasi distribution exponent, ψ, and its 95%
confidence interval is given.

The sequence for estimating λ and ψ is that first a baseline Poisson-normal
GLM is run. Poisson-normal refers to the conditional response following a Poisson
distribution, while the random effects follow a normal distribution. Similar termi-
nology follows for the Poisson-gamma and Poisson-quasi GLMs. Once the Poisson-
normal GLM baseline is established, a Poisson-gamma GLM is run. The deviance
residuals from this model are used to estimate the power normal distribution trun-
cation parameter λ using a Box-Cox transformation. The pseudo-response ξ from
the Poisson-gamma HGLM is used with λ̂ to estimate ψ using both the closed form
method and the empirical method. A X-Y plot of ψ̂ versus λ̂ is given for each of the
three data sets. This plot shows the nonlinear response of the closed form of ψ̂ to λ̂.

With the determination of ψ, a Poisson-quasi GLM is run. Then each of
the three random effects GLM outcomes are compared. The comparison consists
of analyzing the overdispersion using the variance-to-mean ratio, reduction in the
estimated average random effects standard errors, and the respective normal Q-Q
diagnostic plots. The variance-to-mean ratio is calculated from the three GLM fitted
values. The variance and mean of the fitted values form the variance-to-mean ratio.
The random effects standard errors are generated for each level of the random effect
by the GLMs. These individual standard errors then are averaged to form a metric
for comparison. Both the variance-to-mean ratios and the estimated average random
effects standard errors comparisons are graphically represented with bar plots. The
bar plots represent the three distributions efficacy measure by the height of the bars,
and the estimation method of ψ is represented by cross-hatching in the bars: positive
slope hatching represents the closed form method, and negative slope hatching rep-
resents the empirical method. Finally, the normal Quantile-Quantile (normal Q-Q)
diagnostic plots are examined. Normal Q-Q plots are graphical methods for compar-
ing the standardized deviance residuals probability distribution to the standardized
normal probability distribution by plotting their respective quantiles against each
other. First, the set of intervals for the quantiles are chosen. A point (x,y) on the
plot corresponds to one of the quantiles of the second distribution (ordinate) plotted
against the same quantile of the first distribution (abscissa). Thus the normal line
is compared to a parametric curve with each parameter being the number of the
interval for the quantile. The normal Q-Q plots show if the standardized deviance
residuals of the random effects can be considered to be normally distributed, and the
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three distributions can be compared to see which standardized deviance residuals
are normally distributed and which are not.

The analysis for the fabric data is given first, followed by the rats data analysis,
and then the sunspots data outcomes are given. An overall comparison summary
closes this chapter.

Fabric Data

The estimate of λ̂ and its associated 95% confidence interval (CI) is given in Ta-
ble 4.1, and the associated closed form and empirical estimates of ψ̂ along their
respective 95% CI are in Table 4.2.

Table 4.1 Fabric Data λ̂ and 95% Confidence Interval

Estimate 95% CI

0.1818 ( 0.0335, 0.3007 )

Table 4.2 Fabric Data ψ̂ and 95% Confidence Interval

Solution ψ̂ 95% CI

Closed form 0.9102 ( 0.5785, 1.1738 )
Empirical 0.8286 ( 0.6397, 1.0086 )

Note that the empirical solution 95% CI is contained by the 95% CI of the
closed form solution. This indicates there is no statistical difference between the
two values of ψ̂. The closed form estimate of ψ is 8.9651% larger than the empirical
estimate. Both CI’s contain the value one, which implies that a one-parameter
gamma (exponential) distribution is a viable model for the random effects deviance
residuals. As with the rat data and the sunspot data, a normal model and a gamma
model for the fabric data did converge, and produce two HGLMs. However, with the
quasi distribution, the variance function, µψRi iteratively drives to zero. Recall from
the description on IWLS in Chapter 2, the random effects weight, WRi, is calculated
as:

WRi =
∂µRi/∂ξi

µψRi
, (4.19)

s.e.(vi) =
√
diag{f(W−1Ri )} (4.20)
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where µRi is the mean of the random effects, ξi is the pseudo-response of the random
effects in the IWLS, and the quasi distribution variance function is µψRi. On each
IWLS iteration, the variance function collapses to toward zero, which, as the variance
function in the IWLS weight function appears in the denominator of the random
effects standard error, forces the random effects variance-covariance matrix elements
and thereby the standard errors of the random effects estimates to plus infinity.
Hence, convergence of the HGLM is not obtained, and no model parameters are
calculated.

Figure 4.4 is the fabric data plot of the power function exponent ψ̂ versus the
power normal distribution truncation parameter λ̂. The plot is a downward-opening
parabola with the abscissa having domain −1 < λ̂ < 1, and ordinate 0 ≤ ψ̂ ≤ 1,
with the parabola maximum of ψ̂ = 0.9236. The range restricts ψ̂ to being a
normal distribution (ψ̂ = 0), a gamma (exponential) distribution (ψ̂ = 1), or a quasi
distribution (0 < ψ̂ < 1).

The inability of the power function quasi distribution to model the random
effects of the fabric suggest that further work is needed to find suitable power func-
tion exponents. For example, a profile method may provide useful estimates of ψ.
The power normal truncation parameter as a predictor of ψ may still be viable if
another estimation method such as a maximum likelihood estimate of the expected
value of the random effects deviance residuals is used.

Rat Data

The estimate of λ̂ and its associated 95% confidence interval (CI) is given in Table
4.3, and the associated closed form and empirical estimates of ψ̂ and their respective
95% CI are in Table 4.4.

Table 4.3 Rat data λ̂ and 95% confidence interval

Estimate 95% CI

0.1010 ( -0.0288, 0.2718 )

Table 4.4 Rat data ψ̂ and 95% confidence interval

Solution ψ̂ 95% CI

Closed form 0.9639 ( 0.8686, 1.0478 )
Empirical 0.9701 ( 0.9001, 1.0396 )

∆ ψ̂ 0.6432%
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The 95% CI for the empirical estimate is contained by the 95% CI of the closed
form estimate, which is evidence that there is no statistically significant difference
between the closed form and empirical estimates of ψ. The closed form estimate of
ψ is 0.6432% smaller than the empirical estimate.

A plot of the closed form estimate of ψ̂ versus λ̂ is shown in Figure 4.5. The
abscissa is −1 < λ̂ < 1, and ordinate ranges 0 ≤ ψ̂ ≤ 1, with the downward-opening
curve maximum of ψ̂ = 0.9655. The range of values of ψ̂ indicate the random effects
may be normally-distributed (ψ̂ = 0) gamma- (exponentially-) distributed (ψ̂ = 1),
or quasi-distributed (0 < ψ̂ < 1).

The quasi distributions, ui ∼ (µRi, µ
0.9639
Ri ) or ui ∼ (µRi, µ

0.9701
Ri ), are used to

make the performance comparisons. The first comparison is among the variance-to-
mean ratios (conditional response overdispersion measure) for the normal, gamma,
and quasi distributions for the two estimates of ψ. Figure 4.6 is a bar plot of the
variance-to-mean ratios of the three random effects distributions.

The difference between the mean-to-variance ratios of the closed form and the
empirical estimates of ψ is 0.0127%, with the empirical estimate having the smaller
value. Figure 4.6 gives these ratio values rounded to 4 significant figures, for which
there is no difference. A 2.4297% difference exists between the quasi distribution
with the closed form estimate of ψ and the normal distribution, with the normal
distribution having the smaller value. A 2.3460% difference exists between the quasi
distributions and the gamma distribution, again with the gamma distribution having
the smaller value.

The second comparison, depicted in Figure 4.7, is a bar plot of the random
effects estimated average standard errors for the three distributions. There is a dif-
ference of 0.1898% between the closed form and empirical estimates of ψ, with the
empirical estimate being the smaller. The normal distribution is 32.009% smaller
than the standard errors of the closed form quasi distribution. The normal dis-
tribution is 31.807% smaller than the standard error of the empirically-based quasi
distribution. The gamma distribution is 32.127% smaller than the ratio of the closed
form quasi distribution, and the gamma distribution is 31.925% smaller than the ra-
tio of the empirical quasi distribution.

Table 4.5 gives the closed form and empirical random effects standard errors
along with their respective 95% CIs. The CI of the empirically derived standard
error is contained by the CI of the closed form, so there is no statistically significant
difference between the closed form and the empirical quasi distribution random
effects standard errors.

A best goodness-of-fit for fitted HGLMs occurs when standard deviance resid-
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Table 4.5 Rat Data Standard Errors and 95% Confidence Intervals

Solution s.e.(RE) 95% CI

Closed form 0.1054 ( 0.0773, 0.1334 )
Empirical 0.1052 ( 0.0771, 0.1333 )

∆s.e(RE) 0.1898%

uals follow a normal distribution. The normal Q-Q diagnostic plots in Figure 4.8
suggest that none of the distribution’s random effects standardized deviance resid-
uals are normally distributed. This is clarified and supported by the Shapiro-Wilk
tests for normality. The Shapiro-Wilk test parameters are given in Table 4.6. The
normal Q-Q plots and Shapiro-Wilk tests indicate neither the normal distribution,
nor the gamma distribution, nor the two quasi distributions are normally distributed,
suggesting the fits to these distributions may be improved. The quasi distributions
have slightly better goodness-of-fit outcomes than do the normal and gamma distri-
butions.

Table 4.6 Rat Data Standardized Deviance Residuals Shapiro-Wilk Tests

Distribution W p-value Normal

Normal 0.7020 1.245e-06 No
Gamma 0.6972 1.058e-06 No

Quasi, Closed form 0.7532 7.842e-06 No
Quasi, Empirical 0.7528 7.749e-06 No

The variance-to-mean ratio measure suggests that no distribution is preferred.
The random effects standard errors measure suggests that the normal or gamma
distributions are preferred over the two quasi distributions unless the normal and
gamma distributions underestimate the Type I error rate. The normality diagnostics
suggest that no distribution is preferred even the thought the quasi distributions have
slightly better fit outcomes. Therefore the choice comes to using that distribution
which provides the best interpretation of the random effects.

Sunspot Data

The estimate of λ̂ and its associated 95% confidence interval (CI) is given in Table
4.7. The CI includes zero which implies an appropriate distribution to model the
random effects deviance residuals is a normal distribution. The associated closed
form and empirical estimates of ψ̂ and their respective 95% CI are in Table 4.8.
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Table 4.7 Sunspot Data λ̂ and 95% Confidence Interval

Estimate 95% CI

-0.0202 ( -0.0826, 0.0017 )

Table 4.8 Sunspot Data ψ̂ and 95% Confidence Interval

Solution ψ̂ 95% CI

Closed form 0.7734 ( 0.6077, 0.8882 )
Empirical 0.9930 ( 0.9662, 1.0197 )

∆ ψ̂ 16.132%

Unlike the fabric data and the rat data, the 95% CIs for the closed form and
empirical estimates do not overlap. This suggests there is a statistically significant
difference between the closed form and empirical estimates of ψ. The closed form
estimate is 16.132% smaller than the empirical estimate. The CI for the empirical
estimate of ψ includes the value 1 which indicates the appropriate distribution to
model the random effects is a one-parameter gamma distribution.

The plot of the closed form estimate of ψ versus λ̂ is given in Figure 4.9.
The abscissa is −1 < λ̂ < 1, and ordinate is 0 ≤ ψ̂ ≤ 1, with the maximum of
the downward-opening curve of ψ̂ = 0.7734. This constraint on ψ̂ does allow the
random effects to be normal when ψ̂ = 0, a one-parameter gamma when ψ̂ = 1, or
a quasi when 0 < ψ̂ < 1.

The closed form and nonlinear estimates for ψ give the distribution of the
random effects as ui ∼ (µRi, µ

0.7734
Ri ) or ui ∼ (µRi, µ

0.9662
Ri ). These distinct estimates

affect of the performance comparisons. Beginning with the variance-to-mean ratios
in Figure 4.10, the empirical estimate is 0.0192% smaller than that of the closed
from estimate. No best random effects model, normal, gamma, or quasi, is indicated.
However, the normal distribution is 0.2766% smaller than that of the closed form
quasi distribution. The normal distribution is 0.2573% smaller than that of the
nonlinear quasi distribution. The gamma distribution is 0.2798% smaller than that
of the closed form quasi distribution. Similarly, the gamma distribution is 0.2605%
smaller than that of the nonlinear quasi distribution. These small differences suggest
no one distribution need be preferred.

Table 4.9 gives the closed form and empirical random effects standard errors
along with their respective 95% CIs. The CI of the empirically derived standard
error is contained by the CI of the closed form, so there is no statistically significant
difference between the closed form and the empirical quasi distribution random
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effects standard errors.

Table 4.9 Sunspot Data Standard Errors and 95% Confidence Intervals

Solution s.e.(RE) 95% CI

Closed form 0.2312 ( 0.2024, 0.2599 )
Empirical 0.2227 ( 0.1944, 0.2515 )

∆s.e(RE) 3.6765%

The estimated average of the random effects standard errors performance com-
parison in Figure 4.11 show a quite different situation. Firstly, the statistically
significant difference in the estimation methods of ψ result in the nonlinear quasi
distribution for the random effects average standard errors is 3.6541% smaller than
the closed form quasi distribution. The plot and the associated differences reveals
that the two quasi distributions are less desirable with regards to the average stan-
dard errors. That is, the normal distribution is 48.264% smaller than that of the
closed form quasi distribution, and 42.847% smaller than that of the nonlinear quasi
distribution. The gamma distribution is 49.774% smaller than that of the closed
form quasi distribution, and 44.301% smaller than that of the nonlinear quasi dis-
tribution. These differences suggest the normal and gamma distributions may be
preferred over the quasi distributions, but a check of the Type I error rates is ap-
propriate before discounting the quasi distribution estimates.

The normal Q-Q diagnostic plots in Figure 4.12 suggest that none of the dis-
tribution’s random effects standardized deviance residuals are normally distributed.
This is supported by the Shapiro-Wilk tests for normality in Table 4.10. The nor-
mal Q-Q plots and Shapiro-Wilk tests indicate none of the distributions is normal,
suggesting the fits to these distributions may be improved. Note that the two quasi
distributions do not have the possible outlier of the normal and gamma distribu-
tion random effects standardized deviance residuals, and that the goodness-of-fit
outcomes are very slightly better than the normal and gamma distributions.

Table 4.10 Sunspot Data Standardized Deviance Residuals Shapiro-Wilk Tests

Distribution W p-value Normal

Normal 0.5412 3.555e-17 No
Gamma 0.5570 6.879e-17 No

Quasi, closed form 0.5841 2.217e-16 No
Quasi, empirical 0.5820 2.021e-16 No

The three efficacy measures of the variance-to-mean ratios, the estimated av-
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erage random effects standard errors, and the normal Q-Q diagnostic plots give no
preference to the two quasi distributions. The empirical quasi distribution exponent
confidence interval does include the value one, implying a one-parameter gamma dis-
tribution may be appropriate to model the random effects. The mean-to-variance
ratio values and the average standard errors may lead to choosing the one-parameter
gamma distribution as a random effects model for the sunspot data, however, the
Type I error rates must be examined for liberal interpretation.

Comparison Summary

A summary of the efficacy measures comparisons for each data set now is presented.
The overall efficacy of the power function mean-variance relationship quasi distri-
bution will be given in the next chapter.

For each of the data sets, the Poisson-gamma HGLM produced deviance resid-
uals from which the power normal truncation parameter λ and the quasi distribution
exponent ψ were estimated. The truncation parameter domain was restricted as the
result of using the first moment approximation of the power normal distribution,
which contains the constraining term 1 − λ̂2. However, while −1 < λ̂ < 1, none of
the thee data sets Box-Cox estimates of λ from the random effects deviance resid-
uals were outside this domain. A range of quasi distribution exponents results as
0 ≤ ψ̂ ≤ 1. If ψ̂ = 0, then the random effects follow a normal distribution. If ψ̂ = 1,
then the random effects follow a one-parameter gamma (exponential) distribution.
For 0 < ψ̂ < 1, then the random effects follow a power function mean-variance
relationship quasi distribution.

The fabric data analysis shows no statistically significant difference between
ψ estimated from the closed form versus ψ estimated empirically. Non-convergence
of the HGLM IWLS due to the weights approaching zero and the lack of fixed
effects in the model, didn’t produce the necessary performance measures by which
to compare the quasi distributions to the normal and gamma distributions. When
values of ψ < 0.5 that were not selected from the deviance residuals, convergence
was achieved. Hence another method for selecting ψ for at least these fabric data
may be useful.

The rat data also show no statistically significant difference between the closed
form and empirical estimation methods in the distribution comparisons. The efficacy
measures all show that neither the normal, gamma, or quasi distribution are pre-
ferred to model the random effects, though the larger average standard errors of the
two quasi distributions suggest either the normal or the gamma distributions Type
I errors should be evaluated for accurate representation. The confidence intervals of
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the two ψ estimation methods include the value one, which implies a one-parameter
gamma should be considered. The best choice then becomes the one that provides
the most reasonable interpretation of the random effects.

The sunspot data set is the only set that shows a statistically significant dif-
ference between the estimates of ψ from the closed form method and the empirical
method. However, the efficacy measures all show that neither the normal, gamma,
nor quasi distributions are preferred to model the random effects. The larger aver-
age standard errors of the two quasi distributions suggest either the normal or the
gamma distributions may be considered to model the random effects, Type I error
rates allowing.
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Figure 4.4 Power function exponent ψ versus the power normal truncation
parameter λ for the fabric data.
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Figure 4.5 Power function exponent ψ versus the power normal truncation
parameter λ for the rat data.
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Figure 4.6 Variance-to-mean ratios for the normal, gamma, and quasi distributions
for the rat data.
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Figure 4.7 Average standard errors for the normal, gamma, and quasi distributions
for the rat data.
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Figure 4.8 Q-Q normal plots of the rat data closed form and nonlinear solutions
for the normal, gamma, and the two quasi distributions. The normal Q-Q plots
indicate neither the normal distribution, nor the gamma distribution, nor the two
quasi distributions are normally distributed, suggesting the fits using these
distributions may be improved. PN is Poisson-normal, PG is Poisson-gamma, RE
is random effects, Dev is deviance, and Norm is normal.
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Figure 4.9 Power function exponent ψ versus the power normal truncation
parameter λ for the sunspot data (SSN). The maximum of the downward-opening
curve of ψ̂ = 0.7734.
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Figure 4.10 Variance-to-mean ratios for the normal, gamma, and the closed form
and empirical quasi distributions for the sunspot data (SSN). No one distribution
is suggested as the best one for modeling the sunspot random effects.
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Figure 4.11 Average standard errors for the normal, gamma, and quasi
distributions for the sunspot data (SSN). The plot suggests the two quasi
distributions are less desirable estimators of the random effects.
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Figure 4.12 Q-Q normal plots of the sunspot data closed form and nonlinear
solutions for the normal, gamma, and the two quasi distributions. The plots
indicate none of the distributions is normal, suggesting the fits using these
distributions may be improved. Note that the two quasi distributions do not have
the possible outlier of the normal and gamma distribution random effects
standardized deviance residuals. SSN is sunspot number, PN is Poisson-normal,
PG is Poisson-gamma, RE is random effects, Dev is deviance, and Norm is normal.
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Chapter 5

Conclusions

Selecting random effects distributions using a quasi-likelihood approach in this dis-
sertation utilized components of generalized linear models (GLMs), creative incorpo-
ration of the power normal distribution in conjunction with the Box-Cox transforma-
tion, finding closed form and empirical solutions for a power function mean-variance
relationship quasi distribution, and examination of efficacy measures for ascertaining
the viability of the quasi distribution relative to the normal and gamma distributions.
The selection methodology considers whether the exponent in the power function
quasi distribution can be estimated, whether the power function quasi distribution
affects overdispersion, random effects standard errors, and the the random effects
model fit demonstrated by goodness-of-fit from the deviance residuals.

A review of the literature on generalized linear models showed that no work
had been done on using a power function mean-variance relationship quasi distri-
bution to characterize the random effects in hierarchical generalized linear models.
The need to explore the performance properties of the power function quasi dis-
tribution for random effects came from an analysis of sunspot counts data. This
research thereby was restricted to Poisson-distributed responses conditional upon
random effects that group these responses into homoscedastic clusters (Figure 5.1).
Distributions of random effects that best describe this clustering is the subject of
this research, where the distributions of interest are the normal, gamma, and power
function mean-variance relationship quasi distributions.

The properties of the normal and gamma distributions as applied to random
effects are well known, unlike those of the power function quasi distribution. The
power function mean-variance relationship quasi distribution for random effects ui

85
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Effect Mean Model Components Dispersion Model Components

Yij | ui ∼ (µij , a(φij)V (µij)) dij ∼ (φij , 2φ
2
ij)

Fixed ηij = xTijβ + zTi v ηdij = γ0
ηij = g(µij) ηdij = gd(φij)

ui ∼ (µRi, ζiµ
ψ
Ri) dRi ∼ (ζi, 2ζ

2
i )

Random ηdRi = δ0
vi = gR(ui) ηdRi = gdR(ζ)

Figure 5.1 The HGLM for parameter estimation HGLMs with random effects
power function quasi distribution.

is
ui ∼ (µRi, µ

ψ
Ri), (5.1)

where ui is the ith random effect, µRi is the ith random effect mean, and ψ is the
exponent of the power function on µRi that defines the quasi distribution variance.
An unknown, ψ must be estimated before the quasi distribution may be applied
to the random effects for performance comparisons with the normal and gamma
distributions.

The estimation of ψ was derived from the expected value of the power function
random effects deviance residuals,

E(dRi) = 2

[
E(ξ2−ψ)− (2− ψ)E(ξ1−ψ)E(ξi) + (1− ψ)E(ξ2−ψ)

(1− ψ)(2− ψ)

]
. (5.2)

Notice that ψ appears on the pseudo-response ξi that is used in the iterated weighted
least squares (IWLS) parameters, used by Lee & Nelder (1996) to solve hierarchical
GLMs, as the dependent variable for the random effects submodel. The pseudo-
response also appears on the mean of random effects which is estimated by the
expected value of the pseudo-response ξi. In addition, ψ appears in the denominator
of Equation 5.2 as (1 − ψ)(2 − ψ). While values of ξi are available from the IWLS
algorithm, there remains finding a way to solve for ψ.

This research proposed that ψ can be estimated when the E(dRi) is equated to
the first moment approximation of the mean of the power normal distribution. The
power normal distribution was proposed as it shares two properties often manifested
by random effects deviance residuals: left truncation and right skewness.

The first moment approximation of the mean of the power normal distribution
is a function of the power normal truncation parameter, λ, and the random effects



87

deviance residuals as
µPNi

.
= (1− λ2)dRi, (5.3)

where µPNi is the mean of the power normal distribution. The truncation parameter
is estimated from the random effects deviance residuals, dRi, and is the λ parameter
from the Box-Cox transformation on these residuals (Box & Cox, 1964).

A solution for the power function quasi distribution exponent ψ is now possible
when the expected value of the random effects deviance residuals are equated with
the first moment approximation of the mean of the power normal distribution, thus,

2

[
E(ξ2−ψ)− (2− ψ)E(ξ2−ψ) + (1− ψ)E(ξ2−ψ)

(1− ψ)(2− ψ)

]
= (1− λ2)dRi. (5.4)

Excepting ψ, all the terms in this equation have values resulting from the application
of the IWLS algorithm. However, even though values are available, the term E(ξ2−ψi )
is intractable.

By applying the Taylor approximation to E(ξ2−ψi ) about the estimated mean
of the random effects, µRi , a closed form solution for ψ is obtained. Thus,

ψ̂ =
ln[V ar(ξi)]− ln(1− λ̂2)− ln(d̄R)

ln(ξ̄)
, (5.5)

where ξ̄−ψ is the mean of the pseudo-response ξi of the random effects model from
the IWLS algorithm, d̄R is the mean of the random effects deviance residuals, and
λ̂ is the power normal truncation parameter. This closed form may be algebraically
manipulated to obtain an empirical, nonlinear regression equation to solve for ψ,
assuming the ξi and dRi are independent. Thus,

dRi =
V ar(ξi)

1− λ̂2
ξ−ψi . (5.6)

Therefore, two estimates for ψ are obtained, and the answer to the first research
question is that ψ can be estimated.

These two estimates for ψ now give specific values to the power function
exponent, and the random effects quasi distribution becomes

ui ∼ (µRi, µ
ψ̂
Ri). (5.7)

Random effects models by the normal distribution, the gamma distribution,
and the quasi distribution may now be compared. To answer the second and third
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research questions, comparisons among these three distributions were made using
three data sets assuming Poisson-distributed conditional responses, and random
effects that were modeled by the three distributions.

The three data sets used are the fabric data of Bissell (1972), the rats data of
Myers & Montgomery (2002), and sunspot counts data provided by the American
Association of Variable Star Observers (AAVSO) Solar Section. The fabric data and
the rats data appear in the literature as example data for model comparisons. The
sunspot data motivated this power function quasi distribution research.

These three data sets each compared the normal, gamma, and quasi distri-
butions using the efficacy measures from research questions 2 and 3; namely, the
variance-to-mean ratios (overdispersion measure) and the estimated average random
effects standard errors. In addition, a third goodness-of-fit criterion was used: the
normal Q-Q diagnostic plots of the standardized random effects deviance residuals,
and the correlative Shapiro-Wilk statistics for assessing normality. The comparisons
outcomes varied by data set. The fabric data HGLM completely failed to converge
using the power normal distribution, power function exponent estimating method,
thereby giving no model for the comparisons. The sunspot data and the rat data
gave ambivalent results on the three distributions. The answer to research question
2 is that the quasi distribution did not reduce overdispersion over the normal and
gamma distributions. The answer to research question 3 is that the estimated aver-
age random effects standard errors were not reduced over those of the normal and
gamma distributions.

Even though the performance comparisons did not show the quasi distributions
to be efficacious over the normal and gamma distributions, they did demonstrate
that the power function quasi distribution does influence random effects model es-
timates and the model goodness-of-fit plots and Shapiro-Wilk statistics. Hence it is
reasonable to include the quasi distribution as a random effects model candidate. If
the quasi distribution is included as a candidate, it has the capability of suggesting
either a normal or a gamma distribution may be preferred.

While the power function implementation of the quasi distribution in this
research on the chosen data sets was no more efficacious than either the normal
and gamma distributions as random effects models, additional research is needed to
allow an extended range of the power function exponent estimates of ψ below 0 and
above 1. Recall that the expected value of the random effects deviance residuals
was equated to the first moment approximation of the mean for the power normal
distribution. This approximation includes the term 1 − λ̂2, which constrains the
power function exponent as 0 ≤ ψ̂ ≤ 1. This precludes ψ̂ from values outside
0 and 1. A possible remedy is to use the maximum likelihood estimates for the
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power normal distribution, though consideration must be made to account the lack
of consistency in these estimates (Maruo et al., 2011).

Overdispersion in the conditional response mean model and the random ef-
fects mean model are, by McCullagh & Nelder (1989) and Sakate & Kashid (2012),
independent of each other. Further work may be applied to understanding the in-
fluence of the power normal distribution power function exponent on random effects
overdispersion.

Another area for investigation is to try other distributions to equate to the
expected value of the random effects deviance residuals when they are from the power
function mean-variance relationship. These candidate distributions must account
for the frequent appearance of left-truncation and the right-skewness in the random
effects deviance residuals.

A wholly different approach to estimating ψ is to use an iterative method-
ology that bypasses distributional estimation of the expected value of the random
effects deviance residuals from the power function, namely using a profile estimation
method. For example, increment ψ̂ from -3 to +3 in increments of 0.1, and at each
increment of ψ̂, test ui ∼ (µRi, µ

ψ
Ri) in the Poisson-quasi hierarchical GLM. Select

the quasi distributions with the smallest estimated average random effects standard
errors, and compare these to the Poisson-normal and Poisson-gamma estimates.
When the fabric data power normal distribution power function exponent estimat-
ing method failed to converge, hence resulting in no model, an arbitrary choice of ψ
values less than 0.5 did allow the fabric data HGLM to converge. This is evidence
for using the profile method.

Consideration may be given to using the power function quasi distribution to
model functions of random effects predictors. A polynomial function was used in
the random effects model of the rat data. The predictor was the white blood cell
count, and a second order polynomial was used. Such a functional relationship may
be extended to random effects with continuous data; that is, investigate continuous
random effects as an analysis of covariance.

Though this dissertation’s investigation into a power function mean-variance
relationship quasi distribution covered a specific methodology for selecting the quasi
distribution, the outcomes of the Poisson-quasi models encourage further work in
this area. Even so, the specific methodology used in this research for quasi distri-
bution selection clearly indicates that the power normal distribution estimates for
the expected value of the power function deviance residuals is a data set-specific
method for use in Poisson-quasi generalized linear models, but can suggest the ran-
dom effects may be modeled by either a normal distribution, a gamma distribution,



90 CHAPTER 5. CONCLUSIONS

or a Poisson distribution. The power function quasi distribution thus adds options
in modeling counts-specific hierarchical generalized linear model random effects.
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In Chapter 2, a moment generating function for the Power Normal (PN) dis-
tribution was obtained from Freeman & Modarres (2006a) and Freeman & Modarres
(2006b). Here, the series approximation is expanded to give the result in Equation
3.13:

µ = EX1 =

{
(λy + 1)

1
λ (1− λ2) , λ 6= 0

exp(µ+ σ2/2) , λ = 0,
(A.1)

where µ is as defined in Chapter 2. The moment generating function series approx-
imation is

EXr =


∑

even k≥0
σkk!

s
k
2 ( k2 )!

(λy + 1)
r
λ
−k∏k−1

l=1 (r − lλ) , λ 6= 0

exp(rµ+ r2σ2/2) , λ = 0.
(A.2)

The following are the calculations for obtaining Equation A.1.

Firstly, calculate the
∏k−1
l=1 (r − lλ) term in Table A.1; secondly, calculate the

(λy + 1)
r
λ
−k term in Table A.2, and thirdly calculate σkk!

2k/2(k/2)!
term in Table A.3.

Table A.1 Power Normal First Moment
∏k−1
l=1 (r − lλ), λ 6= 0 Term for EXr.

r k k-1
∏k−1
l=1 (r − lλ), l = 1, 2, . . . , k − 1

1 0 -1 (1− λ)(1− 0)(1 + λ) = 1− λ2
2 1 1− λ
4 3 (1− λ)(1− 2λ)(1− 3λ) = 1− 6λ+ 11λ2 − 6λ3

2 0 -1 (2− λ)(2− 0)(2 + λ) = 2(4− λ2)
2 1 2− λ
4 3 (2− λ)(2− 2λ)(2− 3λ) = 8− 36λ− 8λ2 − 12λ3

6 5 (2− λ)(2− 2λ)(2− 3λ)(2− 4λ)(2− 5λ)
= (8− 36λ− 8λ2 − 12λ3)(4− 18λ+ 20λ2)
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Table A.2 Power Normal First Moment (λy + 1)
r
λ
−k, λ 6= 0 erm for EXr.

r k (λy + 1)
r
λ
−k, k = 0, 2, 4, . . .

1 0 (λy + 1)
r
λ

2 (λy + 1)
r
λ
−2

4 (λy + 1)
r
λ
−4

2 0 (λy + 1)
r
λ

2 (λy + 1)
r
λ
−2

4 (λy + 1)
r
λ
−4

6 (λy + 1)
r
λ
−6

Table A.3 Power Normal First Moment σkk!
2k/2(k/2)!

, λ 6= 0 Term for EXr.

k σkk!
2k/2(k/2)!

, k = 0, 2, 4, . . .

0 1

2 σ2·2·1
21·1 = σ2

4 σ44·3·2·1
222·1 = 2σ4

6 σ66·5·4·3·2·1
233·2·1 = 15σ6

Table A.4 Power Normal First Moment∑
ven k≥0

σkk!

s
k
2 ( k2 )!

(λy + 1)
r
λ
−k∏k−1

l=1 (r − lλ), λ 6= 0

r k σkk!
2k/2(k/2)!

(λy + 1)
r
λ
−k ∏k−1

l=1 (r − lλ)

1 0 1 (λy + 1)
r
λ 1− λ2

2 σ2 (λy + 1)
r
λ
−2 1− λ

4 2σ4 (λy + 1)
r
λ
−4 1− 6λ+ 11λ2 − 6λ3

2 0 1 (λy + 1)
r
λ 1− λ2

2 σ2 (λy + 1)
r
λ
−2 1− λ

4 2σ4 (λy + 1)
r
λ
−4 1− 6λ+ 11λ2 − 6λ3

6 15σ6 (λy + 1)
r
λ
−6 (8− 36λ− 8λ2 − 12λ3)(4− 18λ+ 20λ2)
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This HGLM implementation derives from Ronnegard, Shen & Alam (2013).
The basic change to Ronnegard et al. is the use of the R family such that family =
quasi(link = ”log”, variance = ”mupwr”, pwr = psi), the power normal trunca-
tion parameter λ derived from the Box-Cox transformation the random effects dRi
to specify the power function mean-variance relationship quasi distribution. Also,
the modification outputs the random effects pseudo-response from the augmented
response vector.

######################################################################

##### hglm allowing power fct mean-var relation ##############

######################################################################

# This hglm implementation derives from Ronnegard, et.al. 2011 (see

# ref below).

# The basic change to Ronnegard, et.al. is the use of the R family as

# family=quasi(link=power(boxcox)), the Box-Cox x4m lambda on dri to

# specifiy the random effects mean-variance relationship.

# @url{ronnegard11,

# Author = {Ronnegard, Lars and Shen, Xia and Alam, Moudud},

# Title = {The hglm Package (version 1.2)},

# Urldate = {20110704}}

# Created 28 May 2011, Jamie Riggs

# Modified

# 05 Sep 2013, Jamie Riggs,

# mvr <- quasipf(link="log", variance="mu^pwr", pwr=psi)

# 18 Aug 2013, Jamie Riggs, bar plots, consolidate model

# output

# 05 Apr 2013, Jamie Riggs, modified for PhD research

# 21 Mar 2013, Jamie Riggs, clean-up, matches lmer

# 28 Jan 2012, Jamie Riggs, added variance by mean plot

# 01 Oct 2011, Jamie Riggs, Parametric statistics only

# 22 Aug 2011, Jamie Riggs, modified for regression trend

# removal

# 07 Jun 2011, Jamie Riggs, random effects (Month) model

# Model designations

# m00 - m09: normal-normal

# m10 - m19: Poisson-normal

# m20 - m29: Poisson-gamma

# m30 - m39: Poisson-quasi

######################################################################

##### Libraries ##############################################

######################################################################
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library(MASS)

library(stats)

library(lattice)

library(Matrix)

library(hglm) # use for support functions that needn’t be modified

library(nlme)

library(nlstools)

library(boot)

library(xtable)

######################################################################

##### Functions ##############################################

######################################################################

setwd("/Users/Jamie/Desktop/SPES/SSN/R/")

WD <- getwd()

fn <- paste(WD,"functions.R", sep="/")

source(fn)

setwd("/Users/Jamie/Desktop/UNC/Dissertation/ghglm")

WD <- getwd()

setwd("/Users/Jamie/Desktop/UNC/Dissertation/ghglm/R/hglm")

WD <- getwd()

fn <- paste(WD,"bct.R", sep="/")

source(fn)

setwd("/Users/Jamie/Desktop/UNC/Dissertation/ghglm")

WD <- getwd()

##### ghglm ##################################################

sourceDir <- function(path, trace = TRUE, ...) {

for (nm in list.files(path, pattern = "[.][RrSsQq]$")) {

if(trace) cat(nm,":")

source(file.path(path, nm), ...)

if(trace) cat("\n")

}

}

setwd("/Users/Jamie/Desktop/UNC/Dissertation/ghglm/R/ghglm")

WD <- getwd()

fn <- paste(WD,"GLM.MME.R", sep="/")

source(fn)

fn <- paste(WD,"ghglm.formula.R", sep="/")

source(fn)

fn <- paste(WD,"ghglm.default.R", sep="/")
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source(fn)

fn <- paste(WD,"ghglm.R", sep="/")

source(fn)

#fn <- paste(WD,"summary.ghglm.R", sep="/")

#source(fn)

#fn <- paste(WD,"print.summary.ghglm.R", sep="/")

#source(fn)

#fn <- paste(WD,"plot.ghglm.R", sep="/")

#source(fn)

setwd("/Users/Jamie/Desktop/UNC/Dissertation/ghglm")

WD <- getwd()

##--------------------------------------------------##

## redefine the quasi function. this is just R’s ##

## quasi function with one section added by me. ##

##--------------------------------------------------##

quasipf <- function ( link = "identity",

variance = "constant",

pwr = NULL

) {

linktemp <- substitute(link)

if (is.expression(linktemp) || is.call(linktemp))

linktemp <- link

else if (!is.character(linktemp))

linktemp <- deparse(linktemp)

if (is.character(linktemp))

stats <- make.link(linktemp)

else stats <- linktemp

variancetemp <- substitute(variance)

if (!is.character(variancetemp)) {

variancetemp <- deparse(variancetemp)

if (linktemp == "variance")

variancetemp <- eval(variance)

}

switch(variancetemp, constant = {

variance <- function(mu) rep.int(1, length(mu))

dev.resids <- function(y, mu, wt) wt * ((y - mu)^2)

validmu <- function(mu) TRUE

},

##---added didn’t change the deviance residuals---##

"mu^pwr" = {

variance <- function(mu) mu^pwr

validmu <- function(mu) all(mu > 0)

dev.resids <- function(y, mu, wt)

2 * wt * (y * log(ifelse(y ==

0, 1, y/mu)) + (1 - y) * log(ifelse(y == 1, 1, (1 -

y)/(1 - mu))))

},

##---end part added --------------------------------##
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"mu(1-mu)" = {

variance <- function(mu) mu * (1 - mu)

validmu <- function(mu) all(mu > 0) && all(mu < 1)

dev.resids <- function(y, mu, wt)

2 * wt * (y * log(ifelse(y ==

0, 1, y/mu)) + (1 - y) * log(ifelse(y == 1, 1, (1 -

y)/(1 - mu))))

}, mu = {

variance <- function(mu) mu

validmu <- function(mu) all(mu > 0)

dev.resids <- function(y, mu, wt)

2 * wt * (y * log(ifelse(y ==

0, 1, y/mu)) - (y - mu))

}, "mu^2" = {

variance <- function(mu) mu^2

validmu <- function(mu) all(mu > 0)

dev.resids <- function(y, mu, wt)

pmax(-2 * wt * (log(ifelse(y ==

0, 1, y)/mu) - (y - mu)/mu), 0)

}, "mu^3" = {

variance <- function(mu) mu^3

validmu <- function(mu) all(mu > 0)

dev.resids <- function(y, mu, wt)

wt * ((y - mu)^2)/(y *

mu^2)

}, stop(

paste(variancetemp, "not recognised, possible variances",

"are \"mu(1-mu)\", \"mu\", \"mu^2\", \"mu^3\

"and \"constant\"")))

initialize <- expression({

n <- rep.int(1, nobs)

mustart <- y + 0.1 * (y == 0)

})

aic <- function(y, n, mu, wt, dev) NA

structure(list(family = "quasi", link = linktemp,

linkfun = stats$linkfun, linkinv = stats$linkinv,

variance = variance, dev.resids = dev.resids,

aic = aic, mu.eta = stats$mu.eta, initialize = initialize,

validmu = validmu, valideta = stats$valideta,

varfun = variancetemp),

class = "family")

}

######################################################################

##### Initialization #########################################

######################################################################

##### Sunspot data ###########################################
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Ex <- "201204"

ver <- "00"

setwd("/Users/Jamie/Desktop/SPES/SSN/Data/")

WD <- getwd()

load(paste(WD, "/", "ymtd", Ex, ver, ".RData", sep="")) # loads as X

summary(X)

nrow(X)

SSN <- X

setwd("/Users/Jamie/Desktop/UNC/Dissertation/ghglm")

WD <- getwd()

##### Fabric data ############################################

Ex <- "Fabric"

setwd("/Users/Jamie/Desktop/UNC/Dissertation/ghglm/R/data/")

WD <- getwd()

X <- fetch(Ex)

summary(X)

nrow(X)

Fab <- X

setwd("/Users/Jamie/Desktop/UNC/Dissertation/ghglm")

WD <- getwd()

##### Rats data ##############################################

Ex <- "Rats"

setwd("/Users/Jamie/Desktop/UNC/Dissertation/ghglm/R/data/")

WD <- getwd()

X <- fetch(Ex)

X$Subject <- factor(X$Subject)

X$Drug <- factor(X$Drug)

X$Period <- factor(X$Period)

summary(X)

nrow(X)

Rat <- X

setwd("/Users/Jamie/Desktop/UNC/Dissertation/ghglm")

WD <- getwd()

######################################################################

part <- "W" #################################################

######################################################################

y <- X$w ; y <- x$cal
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yn <- part

n <- length(y)

median <- median(y,na.rm=TRUE)

P25 <- summary(y)[[2]]

P75 <- summary(y)[[5]]

min <- summary(y)[[1]]

max <- summary(y)[[6]]

mean <- mean(y,na.rm=TRUE)

std <- sd(y,na.rm=TRUE)

var <- var(y,na.rm=TRUE)

rate <- mean / var

shape <- rate * mean

rspl <- rgamma(seq(0,max(y),0.1), shape=shape, rate=rate)

spl <- sample(y,length(rspl))

(kst <- ks.test(spl,rspl))

ksgs <- round(kst[[1]],4)

ksgp <- round(kst[[2]],4)

rspl <- rexp(seq(0,max(y),0.1), rate=1/mean)

spl <- sample(y,length(rspl))

(kst <- ks.test(spl,rspl))

kses <- round(kst[[1]],4)

ksep <- round(kst[[2]],4)

(loc <- paste("Plots/", Ex, ver, part, "Hist", ".png", sep=""))

quartz(w=7, h=7, bg="white")

plot(y,type="l")

hp <- hist(y,prob=T, ylim=c(0,max(dgamma(seq(0,max(y),0.1),

shape=shape, rate=rate), dexp(seq(0,max(y),0.1),

rate=1/mean))),col="red",

main=paste(part, "Wolf Number Distribution", sep=" "),

sub=paste("Fitted gam(",round(rate,3),", ", round(shape,3),")

(solid black), exp(",round(1/mean,3),") (dahsed green), n=", n,

sep=""), xlab=paste(part, "Counts", sep=" "))

gl <- lines(seq(0,max(y),0.1), dgamma(seq(0,max(y),0.1), shape=shape,

rate=rate), lwd=3)

el <- lines(seq(0,max(y),0.1), dexp(seq(0,max(y),0.1), rate=1/mean),

lwd=3, lty="dashed", col="green")

text(max(hp$mid), max(hp$density), pos=2,

paste("Kolmogorov-Smirnov Test: Gamma"))

text(max(hp$mid), max(hp$density)-max(hp$density)/10, pos=2,

paste("D=",max(ksgs,kses)))

text(max(hp$mid), max(hp$density)-max(hp$density)/5, pos=2,

paste("p=",max(ksgp,ksep)," "))

grid()

#quartz.save(loc, type="png")
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y <- X$w

x1 <- X$obs

x2 <- factor(X$year)

x3 <- factor(X$mon)

x4 <- X$see

x5 <- X$r

ym <- aggregate(X$w,by=list(year=X$year,mon=X$mon),se)

x6 <- as.numeric(factor(as.numeric(X$year)*100+X$mon,

labels=1:(nrow(ym))))

######################################################################

part <- "ghglm" #############################################

######################################################################

# Model designations

# First digit = distribution (normal=1, gamma=2,

# quasi (closed, nonlinear)=3)

# Second digit = data set (Fabric=2, Rat=3, Sunspot=0)

# m00 - m09: normal-normal

# m10 - m19: Poisson-normal

# m20 - m29: Poisson-gamma

# m30 - m39: Poisson-quasi

##### normal-normal ##########################################

X <- SSN

m00 <- hglm(fixed = w ~ see + r + as.factor(year) + as.factor(mon),

# disp = ~ as.factor(year) + as.factor(mon),

random = ~ 1|obs,

family = quasipoisson(link = log),

rand.family = gaussian(link = identity),

method = "EQL",

data = X)

m <- m00

mm <- "m00"

(ms <- summary(m))

(m00vm <-var(m$fv)/mean(m$fv))

(SeRem <- mean(m$SeRe))

(SeRes <- sd(m$SeRe))

##### Poisson-normal #########################################

##### fabric model

X <- Fab



109

Ex <- "Fab"

ver <- "PN"

m12 <- ghglm(fixed = Faults ~ 1,

random = ~ 1|Length,

family = quasipoisson(link = "log"),

rand.family = gaussian(link = "identity"),

method = "EQL",

data = X)

m <- m12

mm <- "m12"

(ms <- summary(m))

(m$vmratio)

(SeRem <- mean(m$SeRe))

(SeRes <- sd(m$SeRe))

(SeRev <- var(m$SeRe))

##### rats model

X <- Rat

Ex <- "Rat"

ver <- "PN"

m13 <- ghglm(fixed = Y ~ W + R + Drug,

# random = ~ 1|(W + W*W),

random = ~ 1|W,

family = poisson(link = "log"),

rand.family = gaussian(link = "identity"),

method = "EQL",

data = X)

m <- m13

mm <- "m13"

(ms <- summary(m))

(m$vmratio)

(SeRem <- mean(m$SeRe))

(SeRes <- sd(m$SeRe))

(SeRev <- var(m$SeRe))

##### ssn model

X <- SSN

Ex <- "SSN"

ver <- "PN" # PoiNorm

m10 <- ghglm(fixed = w ~ see + r + as.factor(year) + as.factor(mon),

random = ~ 1|obs,

family = quasipoisson(link = "log"),

rand.family = gaussian(link = "identity"),

method = "EQL",

data = X)
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m <- m10

mm <- "m10"

(ms <- summary(m))

(m$vmratio)

(SeRem <- mean(m$SeRe))

(SeRes <- sd(m$SeRe))

(SeRev <- var(m$SeRe))

######################################################################

##### Save model #############################################

######################################################################

#setwd("/Users/Jamie/Desktop/UNC/Dissertation/ghglm")

part <- "ghglm"

WD <- getwd()

outfile <- paste(WD, "/model", Ex, ver, mm, part, ".RData", sep="")

save(m, file=outfile, ascii=FALSE)

##### Load model #############################################

# Model designations

# m00 - m09: normal-normal

# m10 - m19: Poisson-normal

# m20 - m29: Poisson-gamma

# m30 - m39: Poisson-quasi

mm <- "m10" # SSN

mm <- "m12" # Fab

mm <- "m13" # Rat

WD <- getwd()

outfile <- paste(WD, "/model", Ex, ver, mm, part, ".RData", sep="")

load(outfile)

ms <- summary(m)

##### End load model ########################################

######################################################################

part <- "ghglm" #############################################

######################################################################

##### Poisson-gamma ##########################################

##### fabric model

X <- Fab
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Ex <- "Fab"

ver <- "PG"

m22 <- ghglm(fixed = Faults ~ 1,

random = ~ 1|Length,

family = quasipoisson(link = "log"),

rand.family = Gamma(link = "inverse"),

method = "EQL",

data = X)

m <- m22

mm <- "m22"

(ms <- summary(m))

(m$vmratio)

(SeRem <- mean(m$SeRe))

(SeRes <- sd(m$SeRe))

(SeRev <- var(m$SeRe))

##### rats model

X <- Rat

Ex <- "Rat"

ver <- "PG"

m23 <- ghglm(fixed = Y ~ W + R + Drug,

random = ~ 1|(W + W*W),

family = quasipoisson(link = "log"),

rand.family = Gamma(link = "inverse"),

method = "EQL",

data = X)

m <- m23

mm <- "m23"

(ms <- summary(m))

(m$vmratio)

(SeRem <- mean(m$SeRe))

(SeRes <- sd(m$SeRe))

(SeRev <- var(m$SeRe))

##### ssn model

X <- SSN

Ex <- "SSN"

ver <- "PG" # PoiGamma

m20 <- ghglm(fixed = w ~ see + r + as.factor(year) + as.factor(mon),

# disp = ~ as.factor(year) + as.factor(mon),

random = ~ 1|obs,

family = quasipoisson(link = "log"),

rand.family = Gamma(link = "inverse"),

method = "EQL",

data = X)
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m <- m20

mm <- "m20"

(ms <- summary(m))

(m$vmratio)

(SeRem <- mean(m$SeRe))

(SeRes <- sd(m$SeRe))

(SeRev <- var(m$SeRe))

######################################################################

##### Save model ##########################################

######################################################################

#setwd("/Users/Jamie/Desktop/UNC/Dissertation/ghglm")

part <- "ghglm"

WD <- getwd()

outfile <- paste(WD, "/model", Ex, ver, mm, part, ".RData", sep="")

save(m, file=outfile, ascii=FALSE)

##### Load model #############################################

# Model designations

# m00 - m09: normal-normal

# m10 - m19: Poisson-normal

# m20 - m29: Poisson-gamma

# m30 - m39: Poisson-quasi

mm <- "m20" # SSN

mm <- "m22" # Fab

mm <- "m23" # Rat

WD <- getwd()

outfile <- paste(WD, "/model", Ex, ver, mm, part, ".RData", sep="")

load(outfile)

ms <- summary(m)

print(ms,corr=FALSE)

##### End load model ########################################

######################################################################

##### calc lambda ############################################

######################################################################

devid <- (length(m$dev) - max(m$RandC) + 1):

(length(m$dev) - max(m$RandC) + m$RandC[1])

dr <- m$dev[devid]
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bc <- bct(dr~1,plotit=F)

(lvec <- c(bc$cil95,bc$lambda,bc$ciu95))

######################################################################

##### Calc psi with magic #####################################

##### closed form #####################################

######################################################################

Solution <- "Closed"

n.rand <- (length(m$dev) - max(m$RandC) + 1):

(length(m$dev) - max(m$RandC) + m$RandC[1])

A <- data.frame(m$xi, m$dev[n.rand])

names(A) <- c("xi","dR")

lambda <- lvec[2]

lnvxi <- log(var(A$xi))

lnxi <- log(mean(A$xi))

ln1l <- log(1-lambda*lambda)

lndR <- log(mean(A$dR))

(psi <- (lnvxi - ln1l - lndR)/lnxi)

psifun <- function(A,i) {

lnvxi <- log(var(A$xi[i]))

lnxi <- log(mean(A$xi[i]))

ln1l <- log(1-lambda*lambda)

lndR <- log(mean(A$dR[i]))

psifun <- (lnvxi - ln1l - lndR)/lnxi

}

(psi.i <- boot(A, psifun, R=1000))

(psi.ci <- boot.ci(psi.i, conf = 0.95, type = "norm"))

cis <- c(psi.ci$normal[2],psi,psi.ci$normal[3])

names(cis) <- c("CI95L","hat{psi}","CI95H")

cis

##### one-off only plot of psi by lambda #####################

dset <- "Fabric"

dset <- "Rats"

dset <- "SSN"

lambda <- seq(-.999,.999,.001)

lnvxi <- log(var(A$xi))

lnxi <- log(mean(A$xi))

ln1l <- log(1-lambda*lambda)

lndR <- log(mean(A$dR))

psi <- (lnvxi - ln1l - lndR)/lnxi

max(psi)



114 APPENDIX B. HGLM POWER FUNCTION QUASI DISTRIBUTION

(loc <- paste0("Plots/XYpsiBYlambda", dset, ".png"))

quartz(w=5, h=5)

par(lwd=2,family="serif")

plot(lambda, psi, col="black", type="l", xlim=c(-1,1), ylim=c(0,1),

xlab=expression(lambda), ylab=expression(psi))

title(expression(paste(psi, " vs. ", lambda)), line=3)

title("Closed Form Solution", line=2, cex.main=0.9)

title(paste0(dset, " Data"), line=1, cex.main=0.9)

par(lwd=1,family="sans")

grid(col="black")

quartz.save(loc, type="png")

######################################################################

##### Calc psi with magic ###################################

##### nonlinear regression ###################################

######################################################################

Solution <- "Nonlinear"

n.rand <- (length(m$dev) - max(m$RandC) + 1):

(length(m$dev) - max(m$RandC) + m$RandC[1])

A <- data.frame(m$xi, m$dev[n.rand])

names(A) <- c("xi","dR")

summary(A)

#preview(dR ~ xi^(psi), data=A, start=list(psi=1))

xi <- as.numeric(scale(m$xi, center=T, scale=T)) + 4

#1 + abs(min(c(m$dev[n.rand],m$xi))) + m$xi

varxi <- var(xi)

lambda <- lvec[2]

dR <- as.numeric(scale(m$dev[n.rand] * ((1 - lambda*lambda)/varxi),

center=T, scale=T)) + 4 #1 + abs(min(c(m$dev[n.rand],m$xi)))

+ m$dev[n.rand]

A <- data.frame(dR,xi)

mo <- nls(dR ~ a*xi^(psi), data=A,

start=list(psi=lambda,a=1), trace=T)

(mos <- summary(mo))

#confint(mo,"psi")

psi <- mos$parameters[1]

cis <- c(confint(mo,"psi")[1],psi,confint(mo,"psi")[2])

names(cis) <- c("CI95L","hat{psi}","CI95H")

cis

######################################################################

part <- "ghglm" #############################################

######################################################################
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##### Poisson-quasi ##########################################

##### fabric model

X <- Fab

Ex <- "Fab"

ver <- "PQ"

mvr <- quasipf(link="log", variance="mu^pwr", pwr=psi)

m32 <- ghglm(fixed = Faults ~ 1,

random = ~ 1|length,

family = quasipoisson(link = "log"),

rand.family = mvr,

method = "EQL",

data = X)

m <- m32

m32Closed <- m32

m32Nonlinear <- m32

mm <- paste0("m32",Solution)

(ms <- summary(m))

(m$vmratio)

(SeRem <- mean(m$SeRe))

(SeRes <- sd(m$SeRe))

(SeRev <- var(m$SeRe))

##### rats model

X <- Rat

Ex <- "Rat"

ver <- "PQ"

mvr <- quasipf(link="log", variance="mu^pwr", pwr=psi)

m33 <- ghglm(fixed = Y ~ W + R + Drug,

random = ~ 1|(W + W*W),

family = quasipoisson(link = "log"),

rand.family = mvr,

method = "EQL",

data = X)

m <- m33

m33Closed <- m33

m33Nonlinear <- m33

mm <- paste0("m33",Solution)

(ms <- summary(m))

(m$vmratio)

(SeRem <- mean(m$SeRe))

(SeRes <- sd(m$SeRe))
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(SeRev <- var(m$SeRe))

##### ssn model

X <- SSN

Ex <- "SSN"

ver <- "PQ" # PoiQuasi

mvr <- quasipf(link="log", variance="mu^pwr", pwr=psi)

#mvr <- quasi(link=power(psi))

#mvr$variance function(mu) mu^psi

#mvr$varfun <- paste0("mu^",as.character(psi))

m30 <- ghglm(fixed = w~ see + r + as.factor(year) + as.factor(mon),

# disp = ~ as.factor(year) + as.factor(mon),

random = ~ 1|obs,

family = quasipoisson(link = "log"),

rand.family = mvr,

method = "EQL",

data = X)

m <- m30

m30Closed <- m30

m30Nonlinear <- m30

mm <- paste0("m30",Solution)

(ms <- summary(m))

(m$vmratio)

(SeRem <- mean(m$SeRe))

(SeRes <- sd(m$SeRe))

(SeRev <- var(m$SeRe))

######################################################################

##### Save model #############################################

######################################################################

#setwd("/Users/Jamie/Desktop/UNC/Dissertation/ghglm")

part <- "ghglm"

WD <- getwd()

outfile <- paste(WD, "/model", Ex, ver, mm, part, ".RData", sep="")

save(m, file=outfile, ascii=FALSE)

##### Load model #############################################

# Model designations

# m00 - m09: normal-normal

# m10 - m19: Poisson-normal

# m20 - m29: Poisson-gamma
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# m30 - m39: Poisson-quasi

mm <- "m30Closed" # SSN

mm <- "m30Nonlinear" # SSN

mm <- "m32Closed" # Fab

mm <- "m32Nonlinear"

mm <- "m33Closed" # Rat

mm <- "m33Nonlinear"

WD <- getwd()

outfile <- paste(WD, "/model", Ex, ver, mm, part, ".RData", sep="")

load(outfile)

ms <- summary(m)

print(ms,corr=FALSE)

##### End load model ########################################

######################################################################

##### Construct data frame of model parameters ###############

######################################################################

rm(cmp)

Ex <- "Rat"

cmd <- rbind(c(m13$vm,m23$vm,m33$vm),

c(m13$varFix,m23$varFix,m33$varFix),

c(m13$varRanef,m23$varRanef,m33$varRanef),

c(mean(m13$SeRe),mean(m23$SeRe),mean(m33$SeRe)),

c(sd(m13$SeRe),sd(m23$SeRe),sd(m33$SeRe)),

c(var(m13$SeRe),var(m23$SeRe),var(m33$SeRe)),

c(NA,lvec[1],NA),

c(NA,lvec[2],NA),

c(NA,lvec[3],NA),

c(NA,cis[1], NA),

c(NA,cis[2], NA),

c(NA,cis[3], NA)

)

cmd <- data.frame(rep(Ex, nrow(cmd)), c("vmr", "phi", "zeta",

"ReSeAvg", "ReSeSe", "ReSeV", "lambdaL", "lambda", "lambdaU",

"psiL", "psi", "psiU"), cmd)

cmd$Solution <- Solution

colnames(cmd) <- c("DataSet", "Parameter", "Normal", "Gamma",

"Quasi", "Solution")

(cmp <- cmd)

(cmp <- data.frame(rbind(cmp,cmd)))

Ex <- "SSN"

cmd <- rbind(c(m10$vm,m20$vm,m30$vm),

c(m10$varFix,m20$varFix,m30$varFix),
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c(m10$varRanef,m20$varRanef,m30$varRanef),

c(mean(m10$SeRe),mean(m20$SeRe),mean(m30$SeRe)),

c(sd(m10$SeRe),sd(m20$SeRe),sd(m30$SeRe)),

c(var(m10$SeRe),var(m20$SeRe),var(m30$SeRe)),

c(NA,lvec[1],NA),

c(NA,lvec[2],NA),

c(NA,lvec[3],NA),

c(NA,cis[1], NA),

c(NA,cis[2], NA),

c(NA,cis[3], NA)

)

cmd <- data.frame(rep(Ex,nrow(cmd)), c("vmr", "phi", "zeta",

"ReSeAvg", "ReSeSe", "ReSeV", "lambdaL", "lambda", "lambdaU",

"psiL", "psi", "psiU"), cmd)

cmd$Solution <- Solution

colnames(cmd) <- c("DataSet", "Parameter", "Normal", "Gamma",

"Quasi", "Solution")

(cmp <- data.frame(rbind(cmp,cmd)))

Ex <- "Fab"

cmd <- rbind(c(m12$vm,m22$vm,m32$vm),

c(m10$varFix,m20$varFix,m30$varFix),

c(m10$varRanef,m20$varRanef,m30$varRanef),

c(mean(m10$SeRe),mean(m20$SeRe),mean(m30$SeRe)),

c(sd(m10$SeRe),sd(m20$SeRe),sd(m30$SeRe)),

c(var(m10$SeRe),var(m20$SeRe),var(m30$SeRe)),

c(NA,lvec[1],NA),

c(NA,lvec[2],NA),

c(NA,lvec[3],NA),

c(NA,cis[1], NA),

c(NA,cis[2], NA),

c(NA,cis[3], NA)

)

cmd <- data.frame(rep(Ex,nrow(cmd)), c("vmr", "phi", "zeta",

"ReSeAvg", "ReSeSe", "ReSeV", "lambdaL", "lambda", "lambdaU",

"psiL", "psi", "psiU"), cmd)

cmd$Solution <- Solution

colnames(cmd) <- c("DataSet", "Parameter", "Normal", "Gamma",

"Quasi", "Solution")

(cmp <- data.frame(rbind(cmp,cmd)))

PG <- cmp

rm(cmp,cmd)

######################################################################

##### Diagnostics ######################################

##### uses model in "m" ######################################

part <- "diags" ######################################
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######################################################################

(loc <- paste("Plots/", Ex, part, "diag", mm, ".png", sep=""))

quartz(w=6,h=6)

plot(m)

quartz.save(loc, type="png")

##### Fab ####################################################

dset <- "Fabric"

#m <- m12

reres <- (length(m$dev) - max(m$RandC) + 1):

(length(m$dev) - max(m$RandC) + m$RandC[1])

drq1 <- m12$dev[reres]

drq2 <- m22$dev[reres]

drq3 <- m32Closed$dev[reres]

drq4 <- m32Nonlinear$dev[reres]

##### Construct data frame of S-W stats ######################

rm(sw)

dist <- "Normal"

sh <- data.frame(dset, dist, shapiro.test(drq1)$statistic[[1]],

shapiro.test(drq1)$p.value[[1]], " ")

names(sh) <- c("Data","Dist","W","p.value","Solution")

sw <- sh

dist <- "Gamma"

sh <- data.frame(dset, dist, shapiro.test(drq2)$statistic[[1]],

shapiro.test(drq2)$p.value[[1]], " ")

names(sh) <- c("Data","Dist","W","p.value","Solution")

sw <- rbind(sw,sh)

dist <- "Quasi"

sh <- data.frame(dset, dist, shapiro.test(drq3)$statistic[[1]],

shapiro.test(drq3)$p.value[[1]], "Closed")

names(sh) <- c("Data","Dist","W","p.value","Solution")

sw <- rbind(sw,sh)

dist <- "Quasi"

sh <- data.frame(dset, dist, shapiro.test(drq4)$statistic[[1]],

shapiro.test(drq4)$p.value[[1]], "Nonlinear")

names(sh) <- c("Data","Dist","W","p.value","Solution")

(sw <- rbind(sw,sh))

##### Normal Q-Q plots #######################################

(loc <- paste0("Plots/", part, "QQ", Ex, ".png"))

quartz(w=7.5, h=8)

par(mfrow=c(2,2), lwd=2, family="serif")

qqnorm(drq1, main=paste0(dset, " PN RE Dev Norm Q-Q ", " "))

qqline(drq1,lwd=2,col="red")

par(lwd=1)

grid(col="black")
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par(lwd=2)

qqnorm(drq2, main=paste0(dset, " PG RE Dev Gamma Q-Q ", " "))

qqline(drq2,lwd=2,col="red")

par(lwd=1)

grid(col="black")

par(lwd=2)

qqnorm(drq3, main=paste0(dset, " PQ RE Dev Quasi Q-Q ", Solution))

qqline(drq3,lwd=2,col="red")

par(lwd=1, family="sans")

grid(col="black")

par(lwd=2)

qqnorm(drq4, main=paste0(dset, " PQ RE Dev Quasi Q-Q ", Solution))

qqline(drq4,lwd=2,col="red")

par(lwd=1, family="sans")

grid(col="black")

quartz.save(loc, type="png")

##### Rat ####################################################

#devid <- 1:(length(m$dev) - max(m$RandC))

dset <- "Rats"

#m <- m13

reres <- (length(m$dev) - max(m$RandC) + 1):

(length(m$dev) - max(m$RandC) + m$RandC[1])

drq1 <- m13$dev[reres]

drq2 <- m23$dev[reres]

drq3 <- m33Closed$dev[reres]

drq4 <- m33Nonlinear$dev[reres]

##### Construct data frame of S-W stats ######################

rm(sw)

dist <- "Normal"

sh <- data.frame(dset, dist, shapiro.test(drq1)$statistic[[1]],

shapiro.test(drq1)$p.value[[1]], " ")

names(sh) <- c("Data","Dist","W","p.value","Solution")

sw <- sh

sw <- rbind(sw,sh)

dist <- "Gamma"

sh <- data.frame(dset, dist, shapiro.test(drq2)$statistic[[1]],

shapiro.test(drq2)$p.value[[1]], " ")

names(sh) <- c("Data","Dist","W","p.value","Solution")

sw <- rbind(sw,sh)

dist <- "Quasi"

sh <- data.frame(dset, dist, shapiro.test(drq3)$statistic[[1]],

shapiro.test(drq3)$p.value[[1]], "Closed")

names(sh) <- c("Data","Dist","W","p.value","Solution")

sw <- rbind(sw,sh)

dist <- "Quasi"
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sh <- data.frame(dset, dist, shapiro.test(drq4)$statistic[[1]],

shapiro.test(drq4)$p.value[[1]], "Nonlinear")

names(sh) <- c("Data","Dist","W","p.value","Solution")

(sw <- rbind(sw,sh))

##### Normal Q-Q plots #######################################

(loc <- paste0("Plots/", part, "QQ", Ex, ".png"))

quartz(w=7.5, h=8)

par(mfrow=c(2,2), lwd=2, family="serif")

qqnorm(drq1, main=paste0(dset, " PN RE Dev Norm Q-Q ", " "))

qqline(drq1,lwd=2,col="red")

par(lwd=1)

grid(col="black")

par(lwd=2)

qqnorm(drq2, main=paste0(dset, " PG RE Dev Gamma Q-Q ", " "))

qqline(drq2,lwd=2,col="red")

par(lwd=1)

grid(col="black")

par(lwd=2)

qqnorm(drq3, main=paste0(dset, " PQ RE Dev Quasi Q-Q ", Solution))

qqline(drq3,lwd=2,col="red")

par(lwd=1, family="sans")

grid(col="black")

par(lwd=2)

qqnorm(drq4, main=paste0(dset, " PQ RE Dev Quasi Q-Q ", Solution))

qqline(drq4,lwd=2,col="red")

par(lwd=1, family="sans")

grid(col="black")

quartz.save(loc, type="png")

##### SSN ####################################################

#devid <- 1:(length(m$dev) - max(m$RandC))

dset <- "SSN"

#m <- m10

reres <- (length(m$dev) - max(m$RandC) + 1):

(length(m$dev) - max(m$RandC) + m$RandC[1])

drq1 <- m10$dev[reres]

drq2 <- m20$dev[reres]

drq3 <- m30Closed$dev[reres]

drq4 <- m30Nonlinear$dev[reres]

##### Construct data frame of S-W stats ######################

dist <- "Normal"

sh <- data.frame(dset, dist, shapiro.test(drq1)$statistic[[1]],

shapiro.test(drq1)$p.value[[1]], " ")

names(sh) <- c("Data","Dist","W","p.value","Solution")
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sw <- rbind(sw,sh)

dist <- "Gamma"

sh <- data.frame(dset, dist, shapiro.test(drq2)$statistic[[1]],

shapiro.test(drq2)$p.value[[1]], " ")

names(sh) <- c("Data","Dist","W","p.value","Solution")

sw <- rbind(sw,sh)

dist <- "Quasi"

sh <- data.frame(dset, dist, shapiro.test(drq3)$statistic[[1]],

shapiro.test(drq3)$p.value[[1]], "Closed")

names(sh) <- c("Data","Dist","W","p.value","Solution")

sw <- rbind(sw,sh)

dist <- "Quasi"

sh <- data.frame(dset, dist, shapiro.test(drq4)$statistic[[1]],

shapiro.test(drq4)$p.value[[1]], "Nonlinear")

names(sh) <- c("Data","Dist","W","p.value","Solution")

(sw <- rbind(sw,sh))

rm(sh)

######################################################################

##### Normal Q-Q plots #######################################

(loc <- paste0("Plots/", part, "QQ", Ex, ".png"))

quartz(w=7.5, h=8)

par(mfrow=c(2,2), lwd=2, family="serif")

qqnorm(drq1, main=paste0(dset, " PN RE Dev Norm Q-Q ", " "))

qqline(drq1,lwd=2,col="red")

par(lwd=1)

grid(col="black")

par(lwd=2)

qqnorm(drq2, main=paste0(dset, " PG RE Dev Gamma Q-Q ", " "))

qqline(drq2,lwd=2,col="red")

par(lwd=1)

grid(col="black")

par(lwd=2)

qqnorm(drq3, main=paste0(dset, " PQ RE Dev Quasi Q-Q ", Solution))

qqline(drq3,lwd=2,col="red")

par(lwd=1, family="sans")

grid(col="black")

par(lwd=2)

qqnorm(drq4, main=paste0(dset, " PQ RE Dev Quasi Q-Q ", Solution))

qqline(drq4,lwd=2,col="red")

par(lwd=1, family="sans")

grid(col="black")

quartz.save(loc, type="png")

##### Save data set ##########################################

setwd("/Users/Jamie/Desktop/UNC/Dissertation/ghglm")
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WD <- getwd()

outfile <- paste0(WD, "/", "sw", ".RData")

save(sw, file=outfile, ascii=FALSE)

##### Load data set ##########################################

setwd("/Users/Jamie/Desktop/UNC/Dissertation/ghglm")

WD <- getwd()

outfile <- paste(WD, "/", "sw", ".RData", sep="")

load(outfile)

##### End load model ########################################

##### Save data set #########################################

setwd("/Users/Jamie/Desktop/UNC/Dissertation/ghglm")

WD <- getwd()

outfile <- paste0(WD, "/", "PG", ".RData")

save(PG, file=outfile, ascii=FALSE)

##### Load data set ##########################################

setwd("/Users/Jamie/Desktop/UNC/Dissertation/ghglm")

WD <- getwd()

outfile <- paste(WD, "/", "PG", ".RData", sep="")

load(outfile)

##### End load model ########################################

######################################################################

##### bar plots, cf ##########################################

######################################################################

# Model designations

# m00 - m09: normal-normal

# m10 - m19: Poisson-normal

# m20 - m29: Poisson-gamma

# m30 - m39: Poisson-quasi

##### fabric data ############################################

dset <- "Fab"

(ds <- subset(PG, DataSet == dset))

dist <- "Gamma"

pd <- "PG"

m <- m12
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##### VMR % change of quasi over normal or gamma #############

pltt <- "VMR"

rows <- c(1,13)

yl <- c(0,4)

os <- 0.18

sub <- "Random Effects Distribution \n \n

Variance-to-mean ratio = 1 is desired."

ylab="Variance-to-Mean Ratio"

##### Construct data frame model parameter % difs ############

rm(deltas)

deltas <- data.frame(dset, pltt, "Q-N", 100*(ds[rows[1],

"Quasi"] - ds[rows[1], "Normal"])/ds[rows[1],

"Normal"], "Closed")

names(deltas) <- c("Data","Parameter","Delta","Percent","Solution")

dg <- data.frame(dset, pltt, "Q-G", 100*(ds[rows[1],

"Quasi"]-ds[rows[1], "Gamma"])/ds[rows[1],

"Gamma"], "Closed")

names(dg) <- c("Data","Parameter","Delta","Percent","Solution")

deltas <- rbind(deltas,dg)

dg <- data.frame(dset, pltt, "Q-N", 100*(ds[rows[2],

"Quasi"]-ds[rows[2], "Normal"])/ds[rows[2],

"Normal"], "Nonlinear")

names(dg) <- c("Data","Parameter","Delta","Percent","Solution")

deltas <- rbind(deltas,dg)

dg <- data.frame(dset, pltt, "Q-G", 100*(ds[rows[2],

"Quasi"]-ds[rows[2], "Gamma"])/ds[rows[2],

"Gamma"], "Nonlinear")

names(dg) <- c("Data","Parameter","Delta","Percent","Solution")

deltas <- rbind(deltas,dg)

##### Avg RE SE % change of quasi over normal or gamma #######

pltt <- "SEavg"

rows <- c(4,16)

yl <- c(0,0.35)

os <- 0.026

sub <- "Random Effects Distribution \n \n

Smallest average standard error is best."

ylab="Average Random Effects se"

##### Construct data frame model parameter % difs ############

dg <- data.frame(dset, pltt, "Q-N", 100*(ds[rows[1],

"Quasi"]-ds[rows[1],"Normal"])/[rows[1],

"Normal"], "Closed")

names(dg) <- c("Data","Parameter","Delta","Percent","Solution")

deltas <- rbind(deltas,dg)

dg <- data.frame(dset, pltt, "Q-G", 100*(ds[rows[1],
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"Quasi"]-ds[rows[1], "Gamma"])/ds[rows[1],

"Gamma"], "Closed")

names(dg) <- c("Data","Parameter","Delta","Percent","Solution")

deltas <- rbind(deltas,dg)

dg <- data.frame(dset, pltt, "Q-N", 100*(ds[rows[2],

"Quasi"]-ds[rows[2],"Normal"])/ds[rows[2],

"Normal"], "Nonlinear")

names(dg) <- c("Data","Parameter","Delta","Percent","Solution")

deltas <- rbind(deltas,dg)

dg <- data.frame(dset, pltt, "Q-G", 100*(ds[rows[2],

"Quasi"]-ds[rows[2], "Gamma"])/ds[rows[2],

"Gamma"], "Nonlinear")

names(dg) <- c("Data","Parameter","Delta","Percent","Solution")

deltas <- rbind(deltas,dg)

ci <- data.frame(dset,"lambda",lvec[1],lvec[2],lvec[3]," "," ")

names(ci) <- c("Data", "Parameter", "CI95l", "Estimate", "CI95h",

"Dist","Solution")

CIs <- rbind(CIs,ci)

ci <- data.frame(dset, "psi", CIs[[1]], CIs[[2]], CIs[[3]],

" ", "Closed")

names(ci) <- c("Data", "Parameter", "CI95l", "Estimate", "CI95h",

"Dist","Solution")

CIs <- rbind(CIs,ci)

ci <- data.frame(dset, "psi", CIs[[1]], CIs[[2]], CIs[[3]],

" ", "Nonlinear")

names(ci) <- c("Data", "Parameter", "CI95l", "Estimate", "CI95h",

"Dist", "Solution")

(CIs <- rbind(CIs,ci))

rm(CIs)

CIs <- data.frame(dset, "lambda", ds[7,"Gamma"], ds[8,"Gamma"],

ds[9,"Gamma"]," "," ")

names(CIs) <- c("Data", "Parameter", "CI95l", "Estimate", "CI95h",

"Dist", "Solution")

ci <- data.frame(dset, "psi", ds[10,"Gamma"], ds[11,"Gamma"],

ds[12,"Gamma"], " ", "Closed")

names(ci) <- c("Data", "Parameter", "CI95l", "Estimate", "CI95h",

"Dist", "Solution")

CIs <- rbind(CIs,ci)

ci <- data.frame(dset, "psi", ds[22,"Gamma"], ds[23,"Gamma"],

ds[24,"Gamma"], " ", "Nonlinear")

names(ci) <- c("Data", "Parameter", "CI95l", "Estimate", "CI95h",

"Dist", "Solution")

CIs <- rbind(CIs,ci)

se <- qnorm(0.975)*ds[rows[1],"Normal"]/sqrt(m$RandC)

ci <- data.frame(dset, pltt, ds[rows[1],"Normal"] - se,
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ds[rows[1],"Normal"], ds[rows[1],"Normal"] + se,

"Normal", " ")

names(ci) <- c("Data", "Parameter", "CI95l", "Estimate", "CI95h",

"Dist","Solution")

CIs <- rbind(CIs,ci)

se <- qnorm(0.975)*ds[rows[2],"Normal"]/sqrt(m$RandC)

ci <- data.frame(dset, pltt,ds[rows[1],"Gamma"] - se,

ds[rows[1],"Gamma"], ds[rows[1],"Gamma"] + se,

"Gamma", " ")

names(ci) <- c("Data", "Parameter", "CI95l", "Estimate", "CI95h",

"Dist", "Solution")

CIs <- rbind(CIs,ci)

ci <- data.frame(dset, pltt, ds[rows[1],"Quasi"] - se,

ds[rows[1],"Quasi"], ds[rows[1],"Quasi"] + se,

"Quasi", "Closed")

names(ci) <- c("Data", "Parameter", "CI95l", "Estimate", "CI95h",

"Dist","Solution")

CIs <- rbind(CIs,ci)

ci <- data.frame(dset, pltt, ds[rows[2],"Quasi"] - se,

ds[rows[2],"Quasi"], ds[rows[2],"Quasi"] + se,

"Quasi", "Nonlinear")

names(ci) <- c("Data", "Parameter", "CI95l", "Estimate", "CI95h",

"Dist","Solution")

CIs <- rbind(CIs,ci)

##### Bar plots ##############################################

(loc <- paste("Plots/Bar", pltt, pd, dset, ".png", sep=""))

mds <- as.matrix(ds[rows,3:5])

mds[4,5] <- 0.5

mds[16,5] <- 0.5

quartz(w=6, h=6, bg="white")

par(lwd=2,family="serif")

bp <- barplot(as.matrix(ds[rows,3:5]), beside=T, density=10,

angle=c(45,-45), col=c("black","black"), ylim=yl, sub=sub,

ylab=ylab)

text(bp, as.matrix(ds[rows,3:5])+os,

as.character(round(as.matrix(ds[rows,3:5]),4)), pos=1, cex=0.8)

ifelse(pltt == "VMR",

(title("Comparison of Variance-to-Mean Ratios", line=3)),

(title("Comparison of Random Effects Average Standard Errors",

line=3))

)

title(expression(paste("Fabric Data Closed Form and Nonlinear

Solutions for ", psi)), line=2)

ifelse(dist == "Normal",

(title(expression(paste(lambda,

" From Assumed Normal Random Effects")), line=1)),

(title(expression(paste(lambda,
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" From Assumed Gamma Random Effects")), line=1))

)

legend("topleft", c("Closed","Nonlinear"), density=10,

angle=c(45,-45), col=c("black","black"), bty="n")

par(lwd=1,family="sans")

grid(nx=NA, ny=NULL, col="black")

quartz.save(loc, type="png")

##### rats data ##############################################

dset <- "Rat"

(ds <- subset(PG, DataSet == dset))

dist <- "Gamma"

pd <- "PG"

m <- m13

##### VMR % change of quasi over normal or gamma #############

pltt <- "VMR"

rows <- c(1,13)

yl <- c(0,4)

os <- 0.3

sub <- "Random Effects Distribution \n \n

Variance-to-mean ratio = 1 is desired."

ylab="Variance-to-Mean Ratio"

##### Construct data frame model parameter % difs #############

rm(deltas)

dg <- data.frame(dset, pltt, "Q-N", 100*(ds[rows[1],"Quasi"]

- ds[rows[1],"Normal"])/ds[rows[1], "Normal"], "Closed")

names(dg) <- c("Data", "Parameter", "Delta", "Percent", "Solution")

(deltas <- dg)

dg <- data.frame(dset,pltt,"Q-G",100*(ds[rows[1],"Quasi"]

- ds[rows[1],"Gamma"])/ds[rows[1],"Gamma"],"Closed")

names(dg) <- c("Data", "Parameter", "Delta", "Percent", "Solution")

deltas <- rbind(deltas,dg)

dg <- data.frame(dset, pltt, "Q-N", 100*(ds[rows[2],"Quasi"]

- ds[rows[2],"Normal"])/ds[rows[2],"Normal"],"Nonlinear")

names(dg) <- c("Data", "Parameter", "Delta", "Percent", "Solution")

deltas <- rbind(deltas,dg)

dg <- data.frame(dset, pltt, "Q-G", 100*(ds[rows[2],"Quasi"]

- ds[rows[2],"Gamma"])/ds[rows[2],"Gamma"], "Nonlinear")

names(dg) <- c("Data", "Parameter", "Delta", "Percent", "Solution")

(deltas <- rbind(deltas,dg))

##### Avg RE SE % change of quasi over normal or gamma #######
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pltt <- "SEavg"

rows <- c(4,16)

yl <- c(0,0.12)

os <- 0.008

sub <- "Random Effects Distribution \n \n

Smallest average standard error is best."

ylab="Average Random Effects se"

##### Construct data frame model parameter % difs ############

dg <- data.frame(dset, pltt, "Q-N", 100*(ds[rows[1],"Quasi"]

- ds[rows[1],"Normal"])/ds[rows[1],"Normal"], "Closed")

names(dg) <- c("Data", "Parameter", "Delta", "Percent", "Solution")

deltas <- rbind(deltas,dg)

dg <- data.frame(dset, pltt, "Q-G", 100*(ds[rows[1],"Quasi"]

- ds[rows[1],"Gamma"])/ds[rows[1],"Gamma"], "Closed")

names(dg) <- c("Data", "Parameter", "Delta", "Percent", "Solution")

deltas <- rbind(deltas,dg)

dg <- data.frame(dset, pltt, "Q-N", 100*(ds[rows[2],"Quasi"]

- ds[rows[2],"Normal"])/ds[rows[2],"Normal"], "Nonlinear")

names(dg) <- c("Data", "Parameter", "Delta", "Percent", "Solution")

deltas <- rbind(deltas,dg)

dg <- data.frame(dset, pltt, "Q-G", 100*(ds[rows[2],"Quasi"]

- ds[rows[2],"Gamma"])/ds[rows[2],"Gamma"], "Nonlinear")

names(dg) <- c("Data", "Parameter", "Delta", "Percent", "Solution")

(deltas <- rbind(deltas,dg))

rm(CIs)

ci <- data.frame(dset, "lambda", ds[7,"Gamma"], ds[8,"Gamma"],

ds[9,"Gamma"], " ", " ")

names(ci) <- c("Data", "Parameter", "CI95l", "Estimate", "CI95h",

"Dist","Solution")

(CIs <- ci)

#CIs <- rbind(CIs,ci)

ci <- data.frame(dset, "psi", ds[10,"Gamma"], ds[11,"Gamma"],

ds[12,"Gamma"], " ", "Closed")

names(ci) <- c("Data", "Parameter", "CI95l", "Estimate", "CI95h",

"Dist","Solution")

CIs <- rbind(CIs,ci)

ci <- data.frame(dset, "psi", ds[22,"Gamma"], ds[23,"Gamma"],

ds[24,"Gamma"], " ", "Nonlinear")

names(ci) <- c("Data", "Parameter", "CI95l", "Estimate", "CI95h",

"Dist", "Solution")

CIs <- rbind(CIs,ci)

se <- qnorm(0.975)*ds[rows[1],"Normal"]/sqrt(m$RandC)

ci <- data.frame(dset, pltt, ds[rows[1],"Normal"] - se,

ds[rows[1],"Normal"], ds[rows[1],"Normal"] + se,

"Normal", " ")

names(ci) <- c("Data", "Parameter", "CI95l", "Estimate", "CI95h",
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"Dist","Solution")

CIs <- rbind(CIs,ci)

se <- qnorm(0.975)*ds[rows[2],"Normal"]/sqrt(m$RandC)

ci <- data.frame(dset, pltt, ds[rows[1],"Gamma"] - se,

ds[rows[1],"Gamma"], ds[rows[1],"Gamma"] + se,

"Gamma", " ")

names(ci) <- c("Data", "Parameter", "CI95l", "Estimate", "CI95h",

"Dist", "Solution")

CIs <- rbind(CIs,ci)

ci <- data.frame(dset, pltt, ds[rows[1],"Quasi"] - se,

ds[rows[1],"Quasi"], ds[rows[1],"Quasi"] + se,

"Quasi", "Closed")

names(ci) <- c("Data","Parameter","CI95l","Estimate","CI95h",

"Dist","Solution")

CIs <- rbind(CIs,ci)

ci <- data.frame(dset, pltt, ds[rows[2],"Quasi"] - se,

ds[rows[2],"Quasi"], ds[rows[2],"Quasi"] + se, "Quasi",

"Nonlinear")

names(ci) <- c("Data", "Parameter", "CI95l", "Estimate", "CI95h",

"Dist", "Solution")

(CIs <- rbind(CIs,ci))

##### Bar plots ##############################################

(loc <- paste("Plots/Bar", pltt, pd, dset, ".png", sep=""))

quartz(w=6, h=6, bg="white")

par(lwd=2,family="serif")

bp <- barplot(as.matrix(ds[rows,3:5]), beside=T, density=10,

angle=c(45,-45), col=c("black","black"), ylim=yl, sub=sub,

ylab=ylab)

text(bp, as.matrix(ds[rows,3:5])+os,

as.character(round(as.matrix(ds[rows,3:5]),4)), pos=1,

cex=0.8)

ifelse(pltt == "VMR",

(title("Comparison of Variance-to-Mean Ratios", line=3)),

(title("Comparison of Random Effects Average Standard Errors"

line=3))

)

title(expression(

paste("Rats Data Closed Form and Nonlinear Solutions for ",

psi)),

line=2)

ifelse(dist == "Normal",

(title(expression(paste(lambda,

" From Assumed Normal Random Effects")), line=1)),

(title(expression(paste(lambda,

" From Assumed Gamma Random Effects")), line=1))

)

legend("topleft", c("Closed","Nonlinear"), density=10,
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angle=c(45,-45), col=c("black","black"), bty="n")

par(lwd=1,family="sans")

grid(nx=NA, ny=NULL, col="black")

quartz.save(loc, type="png")

##### SSN data ###############################################

dset <- "SSN"

(ds <- subset(PG, DataSet == dset))

dist <- "Gamma"

pd <- "PG"

m <- m10

##### VMR % change of quasi over normal or gamma #############

pltt <- "VMR"

rows <- c(1,13)

yl <- c(0,25)

os <- 1.7

sub <- "Random Effects Distribution \n \n

Variance-to-mean ratio = 1 is desired."

ylab="Variance-to-Mean Ratio"

##### Construct data frame model parameter % difs ############

dg <- data.frame(dset, pltt, "Q-N", 100*(ds[rows[1],"Quasi"]

- ds[rows[1],"Normal"])/ds[rows[1],"Normal"], "Closed")

names(dg) <- c("Data", "Parameter", "Delta", "Percent", "Solution")

deltas <- rbind(deltas,dg)

dg <- data.frame(dset, pltt, "Q-G", 100*(ds[rows[1],"Quasi"]

- ds[rows[1],"Gamma"])/ds[rows[1],"Gamma"], "Closed")

names(dg) <- c("Data", "Parameter", "Delta", "Percent", "Solution")

deltas <- rbind(deltas,dg)

dg <- data.frame(dset, pltt, "Q-N", 100*(ds[rows[2],"Quasi"]

- ds[rows[2],"Normal"])/ds[rows[2],"Normal"], "Nonlinear")

names(dg) <- c("Data", "Parameter", "Delta", "Percent", "Solution")

deltas <- rbind(deltas,dg)

dg <- data.frame(dset, pltt, "Q-G", 100*(ds[rows[2],"Quasi"]

- ds[rows[2],"Gamma"])/ds[rows[2],"Gamma"], "Nonlinear")

names(dg) <- c("Data", "Parameter", "Delta", "Percent", "Solution")

(deltas <- rbind(deltas,dg))

##### Avg RE SE % change of quasi over normal or gamma #######

pltt <- "SEavg"

rows <- c(4,16)

yl <- c(0,0.25)

os <- 0.015
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sub <- "Random Effects Distribution \n \n

Smallest average standard error is best."

ylab="Average Random Effects se"

##### Construct data frame model parameter % difs ############

dg <- data.frame(dset, pltt, "Q-N", 100*(ds[rows[1],"Quasi"]

- ds[rows[1],"Normal"])/ds[rows[1],"Normal"], "Closed")

names(dg) <- c("Data", "Parameter", "Delta", "Percent", "Solution")

deltas <- rbind(deltas,dg)

dg <- data.frame(dset, pltt, "Q-G", 100*(ds[rows[1],"Quasi"]

- ds[rows[1],"Gamma"])/ds[rows[1],"Gamma"], "Closed")

names(dg) <- c("Data", "Parameter", "Delta", "Percent", "Solution")

deltas <- rbind(deltas,dg)

dg <- data.frame(dset, pltt, "Q-N", 100*(ds[rows[2],"Quasi"]

- ds[rows[2],"Normal"])/ds[rows[2],"Normal"], "Nonlinear")

names(dg) <- c("Data", "Parameter", "Delta", "Percent", "Solution")

deltas <- rbind(deltas,dg)

dg <- data.frame(dset, pltt, "Q-G", 100*(ds[rows[2],"Quasi"]

- ds[rows[2],"Gamma"])/ds[rows[2],"Gamma"], "Nonlinear")

names(dg) <- c("Data", "Parameter", "Delta", "Percent", "Solution")

(deltas <- rbind(deltas,dg))

rm(dg)

ci <- data.frame(dset, "lambda", ds[7,"Gamma"], ds[8,"Gamma"],

ds[9,"Gamma"], " ", " ")

names(ci) <- c("Data", "Parameter", "CI95l", "Estimate", "CI95h",

"Dist", "Solution")

CIs <- rbind(CIs,ci)

ci <- data.frame(dset, "psi", ds[10,"Gamma"], ds[11,"Gamma"],

ds[12,"Gamma"], " ", "Closed")

names(ci) <- c("Data", "Parameter", "CI95l", "Estimate", "CI95h",

"Dist", "Solution")

CIs <- rbind(CIs,ci)

ci <- data.frame(dset, "psi", ds[22,"Gamma"], ds[23,"Gamma"],

ds[24,"Gamma"], " ", "Nonlinear")

names(ci) <- c("Data", "Parameter", "CI95l", "Estimate", "CI95h",

"Dist", "Solution")

CIs <- rbind(CIs,ci)

se <- qnorm(0.975)*ds[rows[1],"Normal"]/sqrt(m$RandC)

ci <- data.frame(dset, pltt, ds[rows[1],"Normal"] - se,

ds[rows[1],"Normal"], ds[rows[1],"Normal"] + se, "Normal", " ")

names(ci) <- c("Data", "Parameter", "CI95l", "Estimate", "CI95h",

"Dist","Solution")

CIs <- rbind(CIs,ci)

se <- qnorm(0.975)*ds[rows[2],"Normal"]/sqrt(m$RandC)

ci <- data.frame(dset, pltt, ds[rows[1],"Gamma"] - se,

ds[rows[1],"Gamma"], ds[rows[1],"Gamma"] + se,

"Gamma", " ")
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names(ci) <- c("Data", "Parameter", "CI95l", "Estimate", "CI95h",

"Dist","Solution")

CIs <- rbind(CIs,ci)

ci <- data.frame(dset, pltt, ds[rows[1],"Quasi"] - se,

ds[rows[1],"Quasi"], ds[rows[1],"Quasi"] + se,

"Quasi", "Closed")

names(ci) <- c("Data", "Parameter", "CI95l", "Estimate", "CI95h",

"Dist", "Solution")

CIs <- rbind(CIs,ci)

ci <- data.frame(dset, pltt, ds[rows[2],"Quasi"] - se,

ds[rows[2],"Quasi"], ds[rows[2],"Quasi"] + se,

"Quasi", "Nonlinear")

names(ci) <- c("Data", "Parameter", "CI95l", "Estimate", "CI95h",

"Dist", "Solution")

(CIs <- rbind(CIs,ci))

rm(ci)

##### Bar plots ##############################################

(loc <- paste("Plots/Bar", pltt, pd, dset, ".png", sep=""))

quartz(w=6, h=6, bg="white")

par(lwd=2,family="serif")

bp <- barplot(as.matrix(ds[rows,3:5]), beside=T, density=10,

angle=c(45,-45), col=c("black","black"), ylim=yl, sub=sub,

ylab=ylab)

text(bp, as.matrix(ds[rows,3:5])+os,

as.character(round(as.matrix(ds[rows,3:5]),4)),

pos=1, cex=0.8)

ifelse(pltt == "VMR",

(title("Comparison of Variance-to-Mean Ratios",

line=3)),

(title("Comparison of Random Effects Average Standard Errors",

line=3))

)

title(expression(

paste("SSN Data Closed Form and Nonlinear Solutions for ", psi)),

line=2)

ifelse(dist == "Normal",

(title(expression(paste(lambda,

" From Assumed Normal Random Effects")), line=1)),

(title(expression(paste(lambda,

" From Assumed Gamma Random Effects")), line=1))

)

legend("topleft", c("Closed","Nonlinear"), density=10,

angle=c(45,-45), col=c("black","black"), bty="n")

par(lwd=1,family="sans")

grid(nx=NA, ny=NULL, col="black")

quartz.save(loc, type="png")
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##### Save data set ##########################################

setwd("/Users/Jamie/Desktop/UNC/Dissertation/ghglm")

WD <- getwd()

outfile <- paste0(WD, "/", "deltas", ".RData")

save(deltas, file=outfile, ascii=FALSE)

##### Load data set ##########################################

setwd("/Users/Jamie/Desktop/UNC/Dissertation/ghglm")

WD <- getwd()

outfile <- paste(WD, "/", "deltas", ".RData", sep="")

load(outfile)

##### End load model #########################################

##### Save data set #########################################

setwd("/Users/Jamie/Desktop/UNC/Dissertation/ghglm")

WD <- getwd()

outfile <- paste0(WD, "/", "CIs", ".RData")

save(CIs, file=outfile, ascii=FALSE)

##### Load data set ##########################################

setwd("/Users/Jamie/Desktop/UNC/Dissertation/ghglm")

WD <- getwd()

outfile <- paste(WD, "/", "CIs", ".RData", sep="")

load(outfile)

##### End load model #########################################

######################################################################
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