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Abstract
The modern field of impact crater studies has seen only one main attempt to standardize how crater population data are displayed and pre-
sented [1]. Since that 1979 work, the field, computer power, display capabilities, and relevant statistical methods have all progressed, and 
several assumptions from four decades ago have proven incorrect or incomplete.  Our work is one of the first comprehensive attempts to 
suggest new, revised methods for crater population display and analysis.  Revisions are being made for publication in the journal MAPS.

Size-Frequency Distributions (SFDs)
Traditional Types of Graphs [1]:

• Differential SFD: Craters are binned; bins are scaled by the bin width.
• Relative SFD (“R-Plot”):  Craters are binned; bins are scaled by the bin 
width; values are divided by power law with exponent –3.

• Cumulative SFD: Craters are binned or unbinned; each smaller bin or
diameter value is the number of craters at that diameter and larger.

• Incremental SFD: Craters are binned (i.e., a basic histogram).

Traditional Approach: Data are binned, bin width usually ·21/2.

Issues with Traditional Approach:
• How to deal with 0 or 1 crater per bin?
• Where does the bin’s x value (diameter) really go?
• How does one incorporate any uncertainty in crater diameter?

New Recommendation:  Kernel Density Estimator (KDE) to build an Em-
pirical Density Function (EDF).

1. Represent each crater as a normalized (area under curve = 1) probabil-
ity function, such as a Gaussian1 (KDE).  Mean is measured diameter, 
standard deviation is estimated uncertainty on diameter2.

2. Repeat for every crater.
3. Add each KDE together to get the EDF.
4. The raw product from the EDF is a Differential SFD.
5. Can easily convert to all other traditional display formats.

1Any “reasonable” kernel shape could be used and the final EDF is very similar, regardless.  Common shapes are a 
square/boxcar/top-hat, triangle, cosine, Epanechnikov, and Gaussian.
2Any measured crater diameter has an uncertainty, be it from individual repeatability or another researcher’s repro-
ducibility.  Robbins et al. (2014) [2] showed ≈10%·D is a reasonable estimate of this quantity.

red box on right describes how the new recommendations solve traditional issues

Error Bars / Confidence Interval (CI)
Traditional Approach [1]: Uncertainty is assumed Poisson, N1/2.

Issues with Traditional Approach:
• Philosophically, is Poisson appropriate?
• What about any source of uncertainty beyond the counting (Poisson) 
uncertainty?

• Cumulative: Represents uncertainty of all counts larger than or equal to 
a certain diameter bin, not just the new information in that bin.  Is this ap-
propriate?

• Error “bars” imply an uncertainty in a bin’s count; is it more appropriate 
to think of this as a confidence envelope?

New Recommendation:  Modified Bootstrap with Replacement [3]
1. Create the main crater EDF.
2. For each Monte Carlo run mi, run M times ...

a. For each ni, for a total of N times (where N = # craters in popula-
tion): sample, at random, a crater diameter from the EDF.

b. Create EDF.
c. Save EDF at each diameter position (di) of interest.

3. For each di:
a. Sort M values from the bootstrapped EDFs.
b. Find the number in the sorted list where the EDF at that di is (call it 

θEDF).
c. For a certain confidence level (e.g., 68%) (call it ψ):

• Lower bound is value at: θPDF·(1–ψ)
• Upper bound is value at: (M–θPDF)·ψ+θPDF

red box on right describes how the new recommendations solve traditional issues

An Example SFD with CI
• Bottom: “Rug plot” has 

tick marks for each 
crater diameter.

• New plots mirror basic 
trends of traditional plots

• New plots introduce dif-
ferent qualities at large 
diameters due to “gaps” 
in the data.  These gaps 
manifest as large dips 
BUT with increased un-
certainty.

• New plots allow visually 
simple “at a glance” 
analysis of overlaps, dif-
ferences, and uncertain-
ties.

• Rug plot allows simple “at 
a glance” of crater diam-
eters in sample.

• Shaded confidence inter-
val shows ±2σ while 
dashed envelope is ±1σ.
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Completeness Limit (all data)  1 km
Bin Positions: Geometric Mean
Error Bars: 1  (Poisson)

New EDF plots.Classic Binned plots.

Fitting a Power Law
Traditional Methods: Least-Squares

Issues with Least-Squares:
• Assumes Gaussian nature of data, which is not valid for crater data.
• Assumes independent and identically distributed uncertainty on each data 
point, which is not valid for cumulative SFDs.

• Very difficult to factor in diameter uncertainty.

Recommendation:  Maximum Likelihood Estimator (MLE)
• Statistically robust for power-law-based data. (see [4])
• Does not matter how data are binned/displayed, it only operates on the 
“raw” crater diameters.

• Always returns a fit value if N≥2.
• Is easier to use than least-squares:

a Pareto distribution: 

Dmin = minimum diameter crater

differential SFD slope:         –α–1
cumulative SFD slope:         –α
relative SFD / R-plot slope:  –α+2

α =
N∑N

i=1 ln(Di/Dmin)

f(D) = α
Dα

min

Dα+1
i
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 SFDEDF Power-Law Fit, Least-Squares (Dmin+3· Dmin, Dmax)
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Truncated Test:
data drawn from –3
power-law distribution
with Dmin = 1, but fit so
Dmax = 4 km; N ≥ 80 so
>50% chance Dmax was
present in the sample

Monte Carlo 
results of fitting 
simulated data 
via ⓐ least- 
squares for 
traditional bins 
or from sampling 
the EDF, ⓑ 
least- squares 
for traditional 
bins or from 
MLE to the 
crater diame-
ters, and ⓒ 
truncating the 
data to larger 
diameters and 
using using the 
truncated form 
of MLE.

They show the 
MLE fits have 
less bias (it is 
closer to the true 
value) and less 
variance (it is 
closer more 
often) than tradi-
tional least- 
squares results.
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SFDs
1) Eliminates issue of 0 or 1 crater per bin because 

there are no longer “bins” in the display.
2) Eliminates issue of where to place a bin’s diameter 

because there are no longer “bins” in the display.
3) Built-in method to account for uncertainty in crater 

diameter.
4) Easy to construct and convert between different 

display “types” (R, cumulative, differential, etc.).
5) Trends visible in the traditional methods are still 

present, so the institutional knowledge of how to 
interpret slopes, etc. remains.

Confidence Intervals
1) Eliminates assumption and structure imposed by 

Poisson: (a) mean equals square-root of standard 
deviation, (b) error bars are symmetric.

2) More statistically robust.
3) Still easy to calculate, though may take several 

minutes on larger datasets.
4) Increased uncertainty where large differences are 

between adjacent crater diameters in a sorted list.

Power-Law Fitting via ML
1) Computationally simple and easier than least- 

squares.
2) Much more statistically robust than least-squares.
3) Much less biased than least-squares.
4) Operates on original data rather than dependent 

on how data are displayed.

Why Use These Techniques?

Basic Data Display:
1) Include detailed information in any plot, including a legend 

of all regions graphed, number of craters per region, and 
surface area.  If this will not fit, include in caption.

2) Include both a cumulative and relative SFD because each 
show different aspects of the population.

3) Include a rug plot showing where the input data lie.

Interpretation:
1) Extreme caution must be taken near the completeness limit 

of one’s data, and the completeness limit may be larger 
than estimated (see also [2]).

Data Archiving (may be US-Specific):
1) Crater data should be archived as supplemental material or 

in PDS or the USGS PDS Annex if at all feasible.
*This is a small subset, focused on general display and reporting recommenda-
tions that should be universal.  Our manuscript goes into significantly more detail.

Other Recommendations*
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