Introduction

Models

Parameters

Development

# A Generalized Linear Mixed Model for Enumerated Sunspots

# Jamie Riggs

Applied Statistics and Research Methods Deep Space Exploration Society

#### Second Sunspot Workshop SIDC, Royal Observatory of Belgium

May 22, 2012

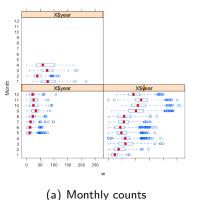
### UNIVERSITY of NORTHERN COLORADO



Jamie Riggs Applied Statistics, UNCO DSES

Second Sunspot Workshop, 21-25 May 2012, Brussels

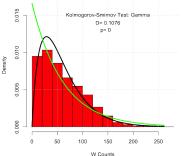
| Introduction |  | Models | Parameters | Development |
|--------------|--|--------|------------|-------------|
|              |  |        |            |             |
| Presentat    |  |        |            |             |


- Introduction
- Background
- American Relative Sunspot Number
- Generalized Linear Mixed Models
- Future Development
- Acknowledgments
   Rodney Howe, Solar Bulletin Editor, AAVSO
   Trent Lalonde, Applied Statistics, University of Northern Colorado

Jamie Riggs Applied Statistics, UNCO DSES

| Introduction |         | Models | Parameters | Development |
|--------------|---------|--------|------------|-------------|
|              |         |        |            |             |
| The Stat     | tistics |        |            |             |

- Multiple observers ( $\sim$  60) worldwide
- Three random variables: sunspot counts, observers, and monthly sunspot numbers
- Sunspot numbers are known to follow an approximately 11-year sinusoidal cycle
- The statistical model needs to tie the average monthly sunspot numbers to the observer-reported counts
- The statistical model should tie historical numbers and predict future numbers


# Monthly Submissions and Histogram



#### w vs Month

(b) Histograr

#### W Wolf Number Distribution



Fitted gam(0.032, 1.904) (black), exp(0.017) (green), n=14660

#### (b) Histogram with fitted pdfs

Jamie Riggs Applied Statistics, UNCO DSES

Second Sunspot Workshop, 21-25 May 2012, Brussels

| Background | Models | Parameters | Development |
|------------|--------|------------|-------------|
|            |        |            |             |

## Wolf, Wald, and Shapley

Jamie Riggs Applied Statistics, UNCO DSES

Second Sunspot Workshop, 21-25 May 2012, Brussels

|          | Background | Models | Parameters | Development |
|----------|------------|--------|------------|-------------|
|          |            |        |            |             |
| The Frai | mers       |        |            |             |

### Wolf, R, 1848.

- Developed the Wolf number (an International sunspot number, relative sunspot number, or Zürich number)
- A quantity measuring the number of sunspots and groups of sunspots on the Sun's surface
- The relative sunspot number R is computed as

$$R = k(10g + s)$$

where

- *s* is the number of individual spots
- g is the number of sunspot groups
- *k* is a factor that varies with location and instrumentation

Jamie Riggs Applied Statistics, UNCO DSES

Second Sunspot Workshop, 21-25 May 2012, Brussels

|          | Background | Models | Parameters | Development |
|----------|------------|--------|------------|-------------|
|          |            |        |            |             |
| The Frar | ners       |        |            |             |

- Wald, A., The Fitting of Straight Lines if Both Variables are Subject to Error, Annals Mathematical Statistics, 1940, Vol. 11, No. 3, pp. 284-300.
  - Response, Y, and predictor, X are random variables
  - Method of least squares (SLR) usually used
  - Fit parameters different for  $Y \sim f(X)$  and  $X \sim f(Y)$

|          | Background | Models | Parameters | Development |
|----------|------------|--------|------------|-------------|
|          |            |        |            |             |
| The Frar | mers       |        |            |             |

- Shapley, A.H., Reduction of Sunspot-Number Observations, *Publication of the Astronomical Society of the Pacific*, 1949, Vol. 61, No. 358, pp 13-21.
  - Adapted Wald's method to correct observations from many observers to the American Relative sunspot number
  - Correction factor accounts for variations in equipment and seeing conditions
  - A "statistical weight" per observer is also used

Jamie Riggs Applied Statistics, UNCO DSES

|  | Ra | Models | Parameters | Development |
|--|----|--------|------------|-------------|
|  |    |        |            |             |
|  |    |        |            |             |

## The American Relative Sunspot Number

Jamie Riggs Applied Statistics, UNCO DSES

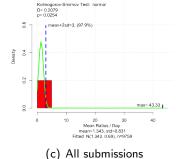
Second Sunspot Workshop, 21-25 May 2012, Brussels

|         |          | Ra | Models | Parameters | Development |
|---------|----------|----|--------|------------|-------------|
|         |          |    |        |            |             |
|         |          |    |        |            |             |
| Shapley | via Wald |    |        |            |             |

$$R_i = k_i (10g_i + s_i) \tag{1}$$

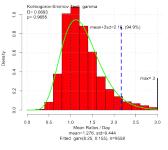
$$R_{a} = \frac{\sum_{i=1}^{N} w_{i} k_{i} R_{i}}{\sum_{i=1}^{N} w_{i}}$$
(2)

$$R_{sm} = \frac{1}{24} \left( R_{a,i-6} + R_{a,i+6} + 2\sum_{j=i-5}^{5} R_{a,j} \right)$$
(3)


Jamie Riggs Applied Statistics, UNCO DSES

Second Sunspot Workshop, 21-25 May 2012, Brussels

ъ.


・ロン ・回と ・ヨン ・ヨン

# Standard-to-Submitted Ratio Distributions

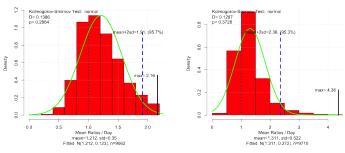


Ratios Wolf Numbers Distribution, Full

#### Ratios Wolf Numbers Distribution, v<2sd



(d) Upper 2 sd removed


Jamie Riggs Applied Statistics, UNCO DSES

 $\triangleleft \square \rightarrow \triangleleft \square \rightarrow \square \square$ Second Sunspot Workshop, 21-25 May 2012, Brussels

|  | Ra | Models | Parameters | Development |
|--|----|--------|------------|-------------|
|  |    |        |            |             |

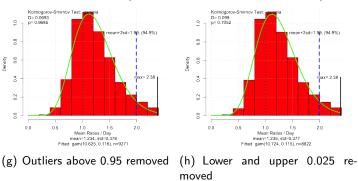
# Standard-to-Submitted Ratio Distributions

Ratios Wolf Numbers Distribution, -2sd<v<2sd



(e) Lower and upper 1 sd removed (f) Outliers above 0.995 removed

Jamie Riggs Applied Statistics, UNCO DSES


 $\triangleleft \square \rightarrow \triangleleft \square \rightarrow \square \square$ Second Sunspot Workshop, 21-25 May 2012, Brussels

Ratios Wolf Numbers Distribution, v<0.995

|  | Ra | Models | Parameters | Development |
|--|----|--------|------------|-------------|
|  |    |        |            |             |

# Standard-to-Submitted Ratio Distributions

Ratios Wolf Numbers Distribution, y<0.95



Ratios Wolf Numbers Distribution, -0.95<y<0.95

Jamie Riggs Applied Statistics, UNCO DSES

|  | Models | Parameters | Development |
|--|--------|------------|-------------|
|  |        |            |             |
|  |        |            |             |

## Generalized Linear Mixed Models (GLMM)

Jamie Riggs Applied Statistics, UNCO DSES

Second Sunspot Workshop, 21-25 May 2012, Brussels

|     |  | Models | Parameters | Development |
|-----|--|--------|------------|-------------|
|     |  |        |            |             |
| GLM |  |        |            |             |

The Poisson probability distribution function

$$f(y;\mu) = \frac{e^{-\mu}\mu^{y}}{y!} = e^{-\mu}\frac{1}{y!}e^{y\log(\mu)}, \quad y = 0, 1, 2, \dots$$
(4)

Jamie Riggs Applied Statistics, UNCO DSES

|     |  | Models | Parameters | Development |
|-----|--|--------|------------|-------------|
|     |  |        |            |             |
| GLM |  |        |            |             |

The Poisson probability distribution function

$$f(y;\mu) = \frac{e^{-\mu}\mu^{y}}{y!} = e^{-\mu}\frac{1}{y!}e^{y\log(\mu)}, \quad y = 0, 1, 2, \dots$$
(4)

Generalized Linear Models (GLM) use a 1-1 link to a monotone function of  $\mu$ 

$$\eta = \mathbf{X}\boldsymbol{\beta} = g(\boldsymbol{\mu}) = \log(\boldsymbol{\mu})$$
 (5)

eta is often estimated through iterative reweighted least squares

Jamie Riggs Applied Statistics, UNCO DSES

 $\triangleleft \square \rightarrow \triangleleft \square \rightarrow \square \square$ Second Sunspot Workshop, 21-25 May 2012, Brussels

|      |  | Models | Parameters | Development |
|------|--|--------|------------|-------------|
|      |  |        |            |             |
| GLMM |  |        |            |             |

In GLMM,  $\eta$  incorporates both fixed effects  $\beta$ , and random effects **u** as

$$\eta = \log(\mu) = \mathbf{X}\beta + \mathbf{Z}\mathbf{u},$$
(6)  

$$\mu = \text{ vector of mean sunspot numbers}$$

$$\mathbf{X} = \text{ fixed effects matrix}$$

$$\beta = \text{ vector of fixed effects parameters}$$

$$\mathbf{Z} = \text{ random effects matrix of observer identifiers}$$

$$\mathbf{u} \sim \text{iid}\mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I}), \text{ random effects parameter vector}$$
(7)

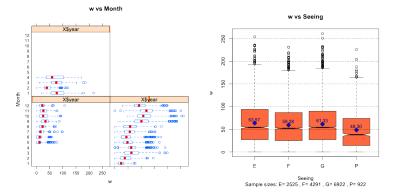
Jamie Riggs Applied Statistics, UNCO DSES

э

|  | Models | Parameters | Development |
|--|--------|------------|-------------|
|  |        |            |             |

# Estimation of $R_a$

Jamie Riggs Applied Statistics, UNCO DSES


< ≣⇒ Second Sunspot Workshop, 21-25 May 2012, Brussels

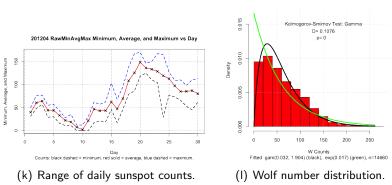
ъ

æ

< 0 > < 0 >

|          |              | Models | Parameters | Development |
|----------|--------------|--------|------------|-------------|
|          |              |        |            |             |
|          |              |        |            |             |
| Estimati | ion of $R_a$ |        |            |             |




(i) Boxplots of Wolf numbers by Year (j) Boxplots of Wolf numbers by seeand Month ing condition

Jamie Riggs Applied Statistics, UNCO DSES

▲ □ ▶ ▲ □ ▶ ▲ Second Sunspot Workshop, 21-25 May 2012, Brussels

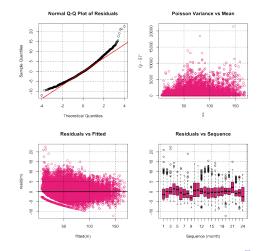
э

|          |              | Models | Parameters | Development |
|----------|--------------|--------|------------|-------------|
|          |              |        |            |             |
|          |              |        |            |             |
| Estimati | ion of $R_a$ |        |            |             |



W Wolf Number Distribution

Jamie Riggs Applied Statistics, UNCO DSES


Second Sunspot Workshop, 21-25 May 2012, Brussels

|          |                            | Models | Parameters | Development |
|----------|----------------------------|--------|------------|-------------|
|          |                            |        |            |             |
| Estimati | on of <i>R<sub>a</sub></i> |        |            |             |

- Marginal likelihood estimation
  - Used on fixed effects model and Poisson/Normal model
  - Removes nuisance parameters by integrating them out
  - Time-consuming iterative integration
- Hierarchical likelihood estimation
  - Allow extra error components in the linear predictors of GLM
  - Distributions of these components not restricted to be normal
  - Uses Henderson's joint likelihood
  - Avoids integration as in marginal likelihood
  - Maximizing the h-likelihood gives
    - Fixed effect estimators asymptotically equivalent to marginal likelihood estimators
    - Obtain random effect estimates asymptotically BLUP

|  | Models | Parameters | Development |
|--|--------|------------|-------------|
|  |        |            |             |

# GLMM Diagnostics $\mathbf{y}|\mathbf{u} \sim Poi(\boldsymbol{\mu}), \ \mathbf{u} \sim \mathcal{N}(\mathbf{0}, \sigma_{\mathbf{u}}^2 \mathbf{I})$



Jamie Riggs Applied Statistics, UNCO DSES

Second Sunspot Workshop, 21-25 May 2012, Brussels.

|        |                      |            | Models                                          | Parameters                            | Development |
|--------|----------------------|------------|-------------------------------------------------|---------------------------------------|-------------|
|        |                      |            |                                                 |                                       |             |
| GLMM [ | Diagnostics <b>y</b> | $ u\sim P$ | $\mathit{voi}(oldsymbol{\mu}),  oldsymbol{u}$ , | $\sim \mathcal{N}(0, \sigma_{u}^2 I)$ |             |

- $s^2/\bar{x} = 21.65875 >> 1$
- Concave up Normal Q-Q plot indicates right-skewed residuals
- Residuals vs. Fitted plot pattern indicates missing or misspecified predictors
- Preliminary use of Gamma error structure for observer random effect reduces the mean-variance ratio

|  | Models | Parameters | Development |
|--|--------|------------|-------------|
|  |        |            |             |
|  |        |            |             |

# **GLMM Sunspot Number Estimates**

#### 250 DOOG 0 200 50 Counts 8 8 20 0 2010.05 2010.08 2011.08 2011.11 2012.02 2010 11 2011.02 2011.05 Sequence (year and month) Solid cvan curve connecting X'a is the loglinear (LL) model fit. Dashed red curve connecting O's SIDC values.

#### Loglinear Mixed Model Fit and SIDC Values vs Sequence

The dotted black curves are 99% lower and upper CIs for LL.

Jamie Riggs Applied Statistics, UNCO DSES

Second Sunspot Workshop, 21-25 May 2012, Brussels

|        |               |   | Models | Parameters | Development |
|--------|---------------|---|--------|------------|-------------|
|        |               |   |        |            |             |
| GLMM ( | Overdispersio | n |        |            |             |

#### Table: Improvements from Error Structure Changes

| $\eta $ u Dist | Link $g(\mu)$ | <b>u</b> Dist | Link v(u) | Method         | $s^2/\bar{x}$ |
|----------------|---------------|---------------|-----------|----------------|---------------|
| Poisson        | log           | fixed         | NA        | GLS            | 22.87         |
| Poisson        | log           | Normal        | identity  | log-likelihood | 21.66         |
| Poisson        | log           | Gamma         | log       | h-likelihood   | 18.49         |
| Poisson        | log           | Poisson       | identity  | h-likelihood   | ?             |
| Gamma          | log           | Gamma         | identity  | h-likelihood   | ?             |
| Gamma          | inverse       | inverse Gamma | inversey  | h-likelihood   | ?             |

Jamie Riggs Applied Statistics, UNCO DSES

Second Sunspot Workshop, 21-25 May 2012, Brussels

2

・ロト ・回ト ・ヨト ・ヨト

|  | Models | Parameters | Development |
|--|--------|------------|-------------|
|  |        |            |             |

### Future Development

Jamie Riggs Applied Statistics, UNCO DSES

|                     |            | Models | Parameters | Development |
|---------------------|------------|--------|------------|-------------|
|                     |            |        |            |             |
| <b>F</b> . <b>D</b> |            |        |            |             |
| - Future D          | evelopment |        |            |             |

### GLMM improvements

- Observer time zone
- Introduce an observer's equipment factor (fixed)
- Test for the effect of the Solar hemisphere
- Calibration from standards
- Test different error structures for counts and for observer random variables
- Multivariate methods
  - Optical observations
  - Magnetometer
  - X-ray
  - 10.7cm radio

Jamie Riggs Applied Statistics, UNCO DSES

Introduction

Models

Parameters

# A Generalized Linear Mixed Model for Enumerated Sunspots

# Jamie Riggs

Applied Statistics and Research Methods Deep Space Exploration Society

#### Second Sunspot Workshop SIDC, Royal Observatory of Belgium

May 22, 2012

### UNIVERSITY of NORTHERN COLORADO



Jamie Riggs Applied Statistics, UNCO DSES

Second Sunspot Workshop, 21-25 May 2012, Brussels