A Generalized Linear Mixed Model for Enumerated Sunspots

Jamie Riggs

Applied Statistics and Research Methods Deep Space Exploration Society

Spring 2012 CO/WY Meeting

April 20, 2012

UNIVERSITY of NORTHERN COLORADO

Jamie Riggs Applied Statistics, UNCO DSES

Spring 2012 CO/WY Meeting, Boulder, CO

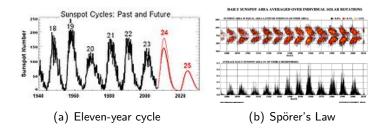
Introduction		Models	Parameters	Future
Solar Bea	auty Spots			

ъ

æ

Introduction		Models	Parameters	Future
Presentat	tion Outline			

- Introduction
- Background
- Wald Approach
- General Linear Mixed Models
- Future Development
- Acknowledgments
 Rodney Howe, Solar Bulletin Editor, AAVSO
 Trent Lalonde, Applied Statistics, University of Northern Colorado


□ ▷ 《 @ ▷ 《 볼 ▷ 《 볼 ▷ 볼 · ♡ ९ (Spring 2012 CO/WY Meeting, Boulder, CO

Introduction		Models	Parameters	Future
The Phys	sics			

- Sunspot generation a current research area
- Sunspots thought to be the visible counterparts of magnetic flux tubes in the Sun's convective zone
- Differential rotation (coriolis effect) stresses the tubes which puncture the Sun's surface
- Energy flux from the Sun's interior decreases and with it surface temperature
- Sunspot activity cycles about every eleven years
- Early in the cycle, sunspots appear in the higher latitudes and then move towards the equator as the cycle approaches maximum: this is called Spörer's law

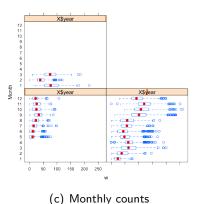
Introduction		Parameters	Future
-	 		

Sunspot Cycle and Butterfly Plot

Jamie Riggs Applied Statistics, UNCO DSES

Spring 2012 CO/WY Meeting, Boulder, CO

< ∃ >


Introduction		Models	Parameters	Future
The Astr	onomy			

- First noted sunspots in 364 BC by Chinese astronomer Gan De
- First telescopy in 1610 by English astronomer Thomas Harriot
- Rudolf Wolf established the Wolf Number in 1848
- AAVSO began the American Relative number in 1949
- Overall, weighted monthly count averages are assumed to be unbiased estimates of the true monthly sunspot numbers
- Sunspot cycle since 2010 is increasing from a minimum

Introduction		Models	Parameters	Future
The Stat	istics			

- Multiple observers (\sim 60) worldwide
- Three random variables: sunspot counts, observers, and monthly sunspot numbers
- Sunspot numbers are known to follow an approximately 11-year sinusoidal cycle
- The statistical model needs to tie the average monthly sunspot numbers to the observer-reported counts
- The statistical model should tie historical numbers and predict future numbers

Monthly Submissions and Histogram

w vs Month

W Wolf Number Distribution

(d) Histogram with fitted pdfs

< 17 ▶

Jamie Riggs Applied Statistics, UNCO DSES

A Generalized Linear Mixed Model for Enumerated Sunspots

Spring 2012 CO/WY Meeting, Boulder, CO

< ∃⇒

	Background	Models	Parameters	Future

Wolf, Wald, and Shapley

Jamie Riggs Applied Statistics, UNCO DSES

A Generalized Linear Mixed Model for Enumerated Sunspots

Spring 2012 CO/WY Meeting, Boulder, CO

	Background	Models	Parameters	Future
The Frar	ners			

Wolf, R, 1848.

- Developed the Wolf number (an International sunspot number, relative sunspot number, or Zürich number)
- A quantity measuring the number of sunspots and groups of sunspots on the Sun's surface
- The relative sunspot number R is computed as

$$R = k(10g + s)$$

where

- s is the number of individual spots
- g is the number of sunspot groups
- k is a factor that varies with location and instrumentation

Jamie Riggs Applied Statistics, UNCO DSES

Spring 2012 CO/WY Meeting, Boulder, CO

	Background	Models	Parameters	Future
The Fran	ners			

- Wald, A., The Fitting of Straight Lines if Both Variables are Subject to Error, Annals Mathematical Statistics, 1940, Vol. 11, No. 3, pp. 284-300.
 - Response, Y, and predictor, X are random variables
 - Method of least squares (SLR) usually used
 - Fit parameters different for $Y \sim f(X)$ and $X \sim f(Y)$

	Background	Models	Parameters	Future
The Frar	ners			

- Shapley, A.H., Reduction of Sunspot-Number Observations, *Publication of the Astronomical Society of the Pacific*, 1949, Vol. 61, No. 358, pp 13-21.
 - Adapted Wald's method to correct observations from many observers to the American Relative sunspot number
 - Correction factor accounts for variations in equipment and seeing conditions
 - A "statistical weight" per observer is also used

	Ra	Models	Parameters	Future

The American Relative Sunspot Number

Jamie Riggs Applied Statistics, UNCO DSES

Spring 2012 CO/WY Meeting, Boulder, CO

		Ra	Models	Parameters	Future
Shapley v	/ia Wald				

$$R_i = k_i (10g_i + s_i) \tag{1}$$

$$R_{a} = \frac{\sum_{i=1}^{N} w_{i} k_{i} R_{i}}{\sum_{i=1}^{N} w_{i}}$$
(2)

$$R_{sm} = \frac{1}{24} \left(R_{a,i-6} + R_{a,i+6} + 2\sum_{j=i-5}^{5} R_{a,j} \right)$$
(3)

Spring 2012 CO/WY Meeting, Boulder, CO

2

・ロト ・回ト ・ヨト ・ヨト

	Models	Parameters	Future

Generalized Linear Mixed Models (GLMM)

Jamie Riggs Applied Statistics, UNCO DSES

Spring 2012 CO/WY Meeting, Boulder, CO

		Models	Parameters	Future
GLM				

The Poisson probability distribution function

$$f(y;\mu) = \frac{e^{-\mu}\mu^{y}}{y!} = e^{-\mu}\frac{1}{y!}e^{y\log(\mu)}, \quad y = 0, 1, 2, \dots$$
(4)

Jamie Riggs Applied Statistics, UNCO DSES

Spring 2012 CO/WY Meeting, Boulder, CO

_ →

		Models	Parameters	Future
GLM				

The Poisson probability distribution function

$$f(y;\mu) = \frac{e^{-\mu}\mu^{y}}{y!} = e^{-\mu}\frac{1}{y!}e^{y\log(\mu)}, \quad y = 0, 1, 2, \dots$$
(4)

Generalized Linear Models (GLM) use a 1-1 link to a monotone function of μ

$$\eta = \mathbf{X}\boldsymbol{\beta} = g(\boldsymbol{\mu}) = \log(\boldsymbol{\mu})$$
 (5)

eta is often estimated through iterative reweighted least squares

Jamie Riggs Applied Statistics, UNCO DSES

A Generalized Linear Mixed Model for Enumerated Sunspots

Spring 2012 CO/WY Meeting, Boulder, CO

		Models	Parameters	Future
GLMM				

 \blacksquare In GLMM, η incorporates both fixed effects $\beta,$ and random effects ${\bf u}$ as

$$\eta = \log(\mu) = \mathbf{X}\beta + \mathbf{Z}\mathbf{u},$$
(6)

$$\mu = \text{ vector of mean sunspot numbers}$$

$$\mathbf{X} = \text{ fixed effects matrix}$$

$$\beta = \text{ vector of fixed effects parameters}$$

$$\mathbf{Z} = \text{ random effects matrix of observer identifiers}$$

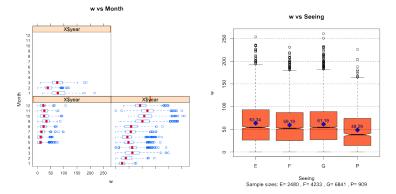
$$\mathbf{u} \sim \text{iid}\mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I}), \text{ random effects parameter vector}$$
(7)

Jamie Riggs Applied Statistics, UNCO DSES

Introduction	Background	Models	Parameters	Future

Estimation of R_a

Jamie Riggs Applied Statistics, UNCO DSES


A Generalized Linear Mixed Model for Enumerated Sunspots

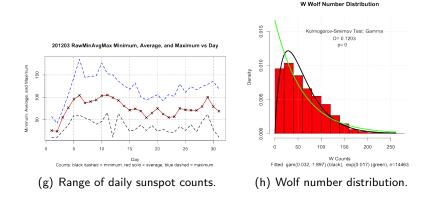
Spring 2012 CO/WY Meeting, Boulder, CO

ъ

æ

		Models	Parameters	Future
Estimatio	on of R _a			

(e) Boxplots of Wolf numbers by (f) Boxplots of Wolf numbers by see-Year and Month ing condition


A Generalized Linear Mixed Model for Enumerated Sunspots

Spring 2012 CO/WY Meeting, Boulder, CO

-∢ ≣⇒

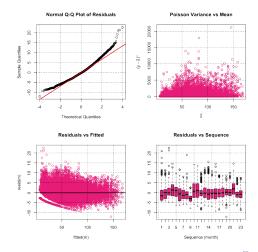
< 17 >

		Models	Parameters	Future
Estimatio	n of Ra			

A Generalized Linear Mixed Model for Enumerated Sunspots

Spring 2012 CO/WY Meeting, Boulder, CO

		Models	Parameters	Future
Estimatic	on of <i>R_a</i>			


- Marginal likelihood estimation
 - Used on fixed effects model and Poisson/Normal model
 - Removes nuisance parameters by integrating them out
 - Time-consuming iterative integration
- Hierarchical likelihood estimation
 - Allow extra error components in the linear predictors of GLM
 - Distributions of these components not restricted to be normal
 - Uses Henderson's joint likelihood
 - Avoids integration as in marginal likelihood
 - Maximizing the h-likelihood gives
 - Fixed effect estimators asymptotically equivalent to marginal likelihood estimators
 - Obtain random effect estimates asymptotically BLUP

Spring 2012 CO/WY Meeting, Boulder, CO

< ∃ >

	Models	Parameters	Future

GLMM Diagnostics $\mathbf{y}|\mathbf{u} \sim Poi(\boldsymbol{\mu}), \ \mathbf{u} \sim \mathcal{N}(\mathbf{0}, \sigma_{\mathbf{u}}^2 \mathbf{I})$

Jamie Riggs Applied Statistics, UNCO DSES

Spring 2012 CO/WY Meeting, Boulder, CO

			Models	Parameters	Future
GLMM E	Diagnostics y	${f u}\sim Po$	$i(oldsymbol{\mu}), {f u} \sim oldsymbol{\mu}$	$\mathcal{N}(0, \sigma_{\mathbf{u}}^2 \mathbf{I})$	

- $s^2/\bar{x} = 21.65875 >> 1$
- Concave up Normal Q-Q plot indicates right-skewed residuals
- Residuals vs. Fitted plot pattern indicates missing or misspecified predictors
- Preliminary use of Gamma error structure for observer random effect reduces the mean-variance ratio

		Parameters	Future

GLMM Sunspot Number Estimates

250 000 00 200 50 ĕ Counts Ř 8 20 0 2010.05 2010.08 2010 11 2011.08 2011.11 2012.02 2011.02 2011.05 Sequence (year and month) Solid cvan curve connecting X'a is the loglinear (LL) model fit. Dashed red curve connecting O's SIDC values.

Loglinear Mixed Model Fit and SIDC Values vs Sequence

The dotted black curves are 99% lower and upper CIs for LL.

Jamie Riggs Applied Statistics, UNCO DSES

Spring 2012 CO/WY Meeting, Boulder, CO

			Models	Parameters	Future
GLMM C	verdispersior]			

Table: Improvements from Error Structure Changes

$\eta $ u Dist	Link $g(\mu)$	u Dist	Link v(u)	Method	s^2/\bar{x}
Poisson	log	fixed	NA	GLS	22.87
Poisson	log	Normal	identity	log-likelihood	21.66
Poisson	log	Gamma	log	h-likelihood	18.49
Poisson	log	Poisson	identity	h-likelihood	?
Gamma	log	Gamma	identity	h-likelihood	?
Gamma	inverse	inverse Gamma	inversey	h-likelihood	?

Jamie Riggs Applied Statistics, UNCO DSES

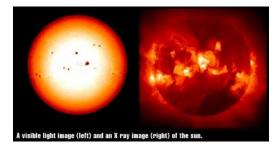
Spring 2012 CO/WY Meeting, Boulder, CO

< ≣⇒

A B +
 A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

	Models	Parameters	Future

Future Development

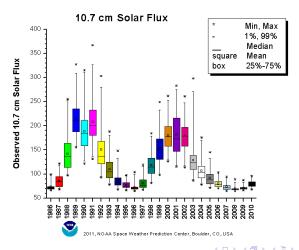

Jamie Riggs Applied Statistics, UNCO DSES

Spring 2012 CO/WY Meeting, Boulder, CO

		Models	Parameters	Future
Future D	evelopment			

- Introduce an observer's equipment factor (fixed)
- Test for the effect of the Solar hemisphere
- Test different error structures for counts and for observer random variables
- Braid in
 - Optical observations from Europe
 - X-ray
 - 10.7cm radio

		Models	Parameters	Future
Soft X-ra	iys			



Spring 2012 CO/WY Meeting, Boulder, CO

æ

<ロ> <四> <四> <日> <日> <日</p>

			Models	Parameters	Future
10.7 cm	(2800 MHz)	Radio			

Spring 2012 CO/WY Meeting, Boulder, CO

Ra

Models

Parameters

Future

A Generalized Linear Mixed Model for Enumerated Sunspots

Jamie Riggs

Applied Statistics and Research Methods Deep Space Exploration Society

Spring 2012 CO/WY Meeting

April 20, 2012

UNIVERSITY of NORTHERN COLORADO

Jamie Riggs Applied Statistics, UNCO DSES

Spring 2012 CO/WY Meeting, Boulder, CO