Ra

Poisson

Parameters

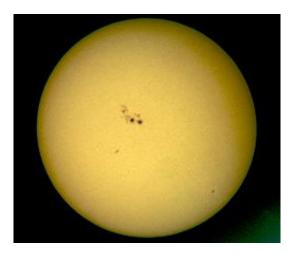
Future

A Generalized Linear Mixed Model for Enumerated Sunspots

Jamie Riggs

Applied Statistics and Research Methods Deep Space Exploration Society

AAVSO 100th Annual Meeting


October 8, 2011

UNIVERSITY of NORTHERN COLORADO

Jamie Riggs Applied Statistics, UNCO DSES

AAVSO 100th Annual Meeting, Cambridge, MA

Introduction		Poisson	Parameters	Future
Solar Be	auty Spots			

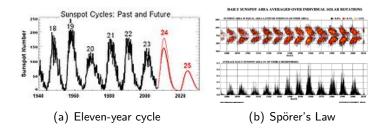
AAVSO 100th Annual Meeting, Cambridge, MA

ъ

æ

Introduction		Poisson	Parameters	Future
Presentat	ion Outline			

- Introduction
- Background
- Wald Approach
- Statistical Models for Counts Data
- Future Development
- Acknowledgments
 Rodney Howe, Solar Bulletin Editor, AAVSO
 Trent Lalonde, Applied Statistics, University of Northern Colorado


 < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Introduction		Poisson	Parameters	Future
The Phys	sics			

- Sunspot generation a current research area
- Sunspots thought to be the visible counterparts of magnetic flux tubes in the Sun's convective zone
- Differential rotation (coriolis effect) stresses the tubes which puncture the Sun's surface
- Energy flux from the Sun's interior decreases and with it surface temperature
- Sunspot activity cycles about every eleven years
- Early in the cycle, sunspots appear in the higher latitudes and then move towards the equator as the cycle approaches maximum: this is called Spörer's law

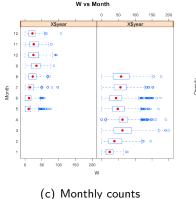
Introduction		Poisson	Parameters	Future

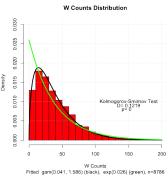
Sunspot Cycle and Butterfly Plot

Jamie Riggs Applied Statistics, UNCO DSES

AAVSO 100th Annual Meeting, Cambridge, MA

Introduction		Poisson	Parameters	Future
The Astr	onomy			


- First noted sunspots in 364 BC by Chinese astronomer Gan De
- First telescopy in 1610 by English astronomer Thomas Harriot
- Rudolf Wolf established the Wolf Number in 1848
- AAVSO began the American Relative number in 1949
- Overall, weighted monthly count averages are assumed to be unbiased estimates of the true monthly sunspot numbers
- As sunspot cycle in the last 5 months is increasing from a minimum, monthly corrections are anticipated


Introduction		Poisson	Parameters	Future
The Stat	istics			

- Multiple observers (\sim 80) worldwide
- Three random variables: sunspot counts, observers, and monthly sunspot numbers
- Sunspot numbers are known to follow an approximately 11-year sinusoidal cycle
- The statistical model needs to tie the average monthly sunspot numbers to the observer-reported counts
- The statistical model should predict sunspot numbers

Introduction		Poisson	Parameters	Future

Monthly Submissions and Histogram

(d) Histogram with fitted pdfs

Jamie Riggs Applied Statistics, UNCO DSES

A Generalized Linear Mixed Model for Enumerated Sunspots

AAVSO 100th Annual Meeting, Cambridge, MA

Background	Poisson	Parameters	Future

Wolf, Wald, and Shapley

Jamie Riggs Applied Statistics, UNCO DSES

AAVSO 100th Annual Meeting, Cambridge, MA

	Background	Poisson	Parameters	Future
The Frar	ners			

Wolf, R, 1848.

- Developed the Wolf number (a International sunspot number, relative sunspot number, or Zürich number)
- A quantity measuring the number of sunspots and groups of sunspots on the Sun's surface
- The relative sunspot number R is computed as

$$R = k(10g + s)$$

where

- s is the number of individual spots
- g is the number of sunspot groups
- *k* is a factor that varies with location and instrumentation

Jamie Riggs Applied Statistics, UNCO DSES

AAVSO 100th Annual Meeting, Cambridge, MA

	Background	Poisson	Parameters	Future
The Fran	ners			

- Wald, A., The Fitting of Straight Lines if Both Variables are Subject to Error, Annals Mathematical Statistics, 1940, Vol. 11, No. 3, pp. 284-300.
 - Response, Y, and predictor, X are random variables
 - Method of least squares (SLR) usually used
 - Fit parameters different for $Y \sim f(X)$ and $X \sim f(Y)$

	Background	Poisson	Parameters	Future
The Frar	ners			

- Shapley, A.H., Reduction of Sunspot-Number Observations, *Publication of the Astronomical Society of the Pacific*, 1949, Vol. 61, No. 358, pp 13-21.
 - Adapted Wald's method to correct observations from many observers to the American Relative sunspot number
 - Correction factor accounts for variations in equipment and seeing conditions
 - A "statistical weight" per observer is also used

AAVSO 100th Annual Meeting, Cambridge, MA

	Ra	Poisson	Parameters	Future

The American Relative Sunspot Number

Jamie Riggs Applied Statistics, UNCO DSES

AAVSO 100th Annual Meeting, Cambridge, MA

		Ra	Poisson	Parameters	Future
Shapley	via Wald				

$$R_i = k_i (10g_i + s_i) \tag{1}$$

AAVSO 100th Annual Meeting, Cambridge, MA

ъ.

<ロ> (四) (四) (日) (日) (日)

		Ra	Poisson	Parameters	Future
Shapley	via Wald				

$$R_i = k_i (10g_i + s_i) \tag{1}$$

$$R_{a} = \frac{\sum_{i=1}^{N} w_{i} k_{i} R_{i}}{\sum_{i=1}^{N} w_{i}}$$
(2)

AAVSO 100th Annual Meeting, Cambridge, MA

2

・ロト ・回ト ・ヨト ・ヨト

		Ra	Poisson	Parameters	Future
Charle	·- \\/-1.1				
Shapley v	via vvald				

$$R_i = k_i (10g_i + s_i) \tag{1}$$

$$R_{a} = \frac{\sum_{i=1}^{N} w_{i} k_{i} R_{i}}{\sum_{i=1}^{N} w_{i}}$$
(2)

$$R_{sm} = \frac{1}{24} \left(R_{a,i-6} + R_{a,i+6} + 2\sum_{j=i-5}^{5} R_{a,j} \right)$$
(3)

AAVSO 100th Annual Meeting, Cambridge, MA

2

・ロト ・回ト ・ヨト ・ヨト

	Poisson	Parameters	Future

Poisson Models

Jamie Riggs Applied Statistics, UNCO DSES

≣⇒ AAVSO 100th Annual Meeting, Cambridge, MA

ъ

æ

_ →

		Poisson	Parameters	Future
Poisson L	Distribution			

Poisson probability distribution function

$$f(y_i; \mu_i) = \frac{e^{-\mu_i} \mu_i^{y_i}}{y_i!} = e^{-\mu_i} \frac{1}{y_i!} e^{y_i \log(\mu_i)}, \quad i = 1, 2, \dots, N$$
(4)

Jamie Riggs Applied Statistics, UNCO DSES

AAVSO 100th Annual Meeting, Cambridge, MA

э

< 17 →

		Poisson	Parameters	Future
	St			
Poisson I	Distribution			

Poisson probability distribution function

$$f(y_i; \mu_i) = \frac{e^{-\mu_i} \mu_i^{y_i}}{y_i!} = e^{-\mu_i} \frac{1}{y_i!} e^{y_i \log(\mu_i)}, \quad i = 1, 2, \dots, N$$
(4)

GLM canonical link to a monotone function of μ_i

$$\log(\mu_i) = \sum_{i,j} \beta_i x_{ij}, \quad i = 1, ..., N, \ j = 1, 2, ..., n_i$$
(5)

Jamie Riggs Applied Statistics, UNCO DSES

AAVSO 100th Annual Meeting, Cambridge, MA

- 4 🗇 🕨 🔺 🖹 🕨 🤘

		Poisson	Parameters	Future
	St			
Poisson I	Distribution			

Poisson probability distribution function

$$f(y_i; \mu_i) = \frac{e^{-\mu_i} \mu_i^{y_i}}{y_i!} = e^{-\mu_i} \frac{1}{y_i!} e^{y_i \log(\mu_i)}, \quad i = 1, 2, \dots, N$$
(4)

GLM canonical link to a monotone function of μ_i

$$\log(\mu_i) = \sum_{i,j} \beta_i x_{ij}, \quad i = 1, ..., N, \ j = 1, 2, ..., n_i$$
(5)

The matrix form including observer, period, and seeing conditions

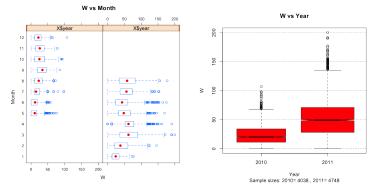
$$\log(\boldsymbol{\mu}_{\mathbf{f}}) = \mathbf{X}\boldsymbol{\beta},\tag{6}$$

Jamie Riggs Applied Statistics, UNCO DSES

AAVSO 100th Annual Meeting, Cambridge, MA

	Poisson	Parameters	Future

Estimation of R_a


Jamie Riggs Applied Statistics, UNCO DSES

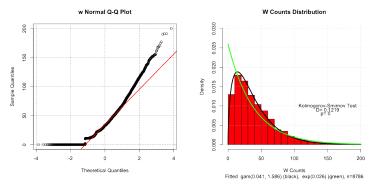
≣⇒ AAVSO 100th Annual Meeting, Cambridge, MA

≣⇒ æ

< 🗇 >

	Background	Poisson	Parameters	Future
Estimatio	on of R_a			

(e) Boxplots of Wolf numbers by (f) Boxplots of Wolf numbers by Month Year


∃ > AAVSO 100th Annual Meeting, Cambridge, MA

э

æ

< 17 >

	Background	Poisson	Parameters	Future
Estimatio	n of R			

(g) The normal Q-Q plot for the Wolf number.

(h) Wolf number distribution.

< 冊

Jamie Riggs Applied Statistics, UNCO DSES

A Generalized Linear Mixed Model for Enumerated Sunspots

AAVSO 100th Annual Meeting, Cambridge, MA

			Poisson	Parameters	Future
GLM wit	h Poisson Eri	ror Strue	cture		

- Several models were fitted using the independent variables observer, seeing conditions, and time sequence
- Two error structures were used: Poisson and negative binomial

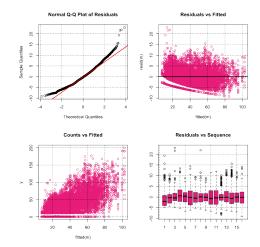
AAVSO 100th Annual Meeting, Cambridge, MA

			Poisson	Parameters	Future
GLM wit	h Poisson Er	ror Stru	cture		

- Several models were fitted using the independent variables observer, seeing conditions, and time sequence
- Two error structures were used: Poisson and negative binomial
- The final model is

$$log(\mu_{ij}) = \beta_0 + \beta_1 x_{1ij} + \beta_2 x_{1ij} + \beta_3 \mathbf{x_{3ij}} + \eta_{ij},$$

$$x_{1ij} = j^{th} \text{ appearance of the } i^{th} \text{ observer}$$

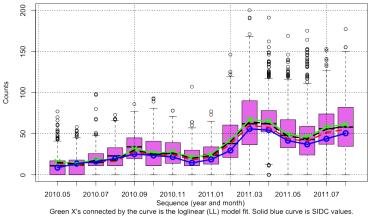

$$x_{2ij} = j^{th} \text{ occurrence of the } i^{th} \text{observer's seeing condition}$$

$$\mathbf{x_{3ij}} = j^{th} \text{ occurrence of the } i^{th} \text{time sequence}$$

AAVSO 100th Annual Meeting, Cambridge, MA

	Poisson	Parameters	Future

GLM with Poisson Error Structure Diagnostics



Jamie Riggs Applied Statistics, UNCO DSES

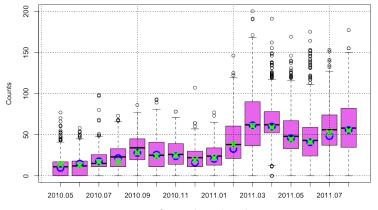
AAVSO 100th Annual Meeting, Cambridge, MA

	Poisson	Parameters	Future

GLM with Poisson Error Structure Diagnostics

Loglinear Model Fit and SIDC Values vs Sequence

Green X's connected by the curve is the loglinear (LL) model fit. Solid blue curve is SIDC values. The dashed red curve is a 99% lower CI for LL. The dashed black curve is a 99% upper CI for SIDC.


Jamie Riggs Applied Statistics, UNCO DSES

AAVSO 100th Annual Meeting, Cambridge, MA

	Poisson	Parameters	Future

GLM with Poisson Error Structure Diagnostics

Adjusted Loglinear Model Fit and Adjusted SIDC Values vs Sequence

Sequence (year and month) Green X's are loglinear model fits adjusted by 0.9. Blue O's are SIDC_values adjusted by 1.1. (\equiv) \equiv \bigcirc \bigcirc

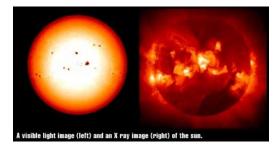
Jamie Riggs Applied Statistics, UNCO DSES

AAVSO 100th Annual Meeting, Cambridge, MA

	Poisson	Parameters	Future

Future Development

Jamie Riggs Applied Statistics, UNCO DSES

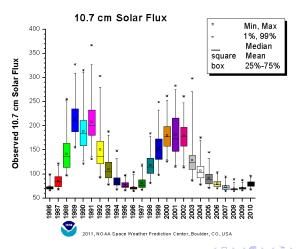

AAVSO 100th Annual Meeting, Cambridge, MA

æ

		Poisson	Parameters	Future
Future D	evelopment			

- Introduce an observer's equipment factor (fixed)
- Test for the effect of the Solar hemisphere
- Braid in
 - Optical observations from Europe
 - X-ray observations from GOES-15 satellite
 - 10.7cm radio from Deep Space Exploration Society, Canada, and Australia

		Poisson	Parameters	Future
Soft X-ra	ys			



AAVSO 100th Annual Meeting, Cambridge, MA

2

<ロ> <四> <四> <日> <日> <日</p>

			Poisson	Parameters	Future
10.7 cm	(2800 MHz)	Radio			

AAVSO 100th Annual Meeting, Cambridge, MA

Ra

Poisso

Parameters

Future

A Generalized Linear Mixed Model for Enumerated Sunspots

Jamie Riggs

Applied Statistics and Research Methods Deep Space Exploration Society

AAVSO 100th Annual Meeting

October 8, 2011

UNIVERSITY of NORTHERN COLORADO

Jamie Riggs Applied Statistics, UNCO DSES

AAVSO 100th Annual Meeting, Cambridge, MA