Introdu	iction	Background	Poisson	Parameters	

A Generalized Linear Mixed Model for Enumerated Sunspots

Jamie Riggs


Applied Statistics and Research Methods Colloquium University of Northern Colorado

September 7, 2011

Jamie Riggs

Applied Statistics and Research Methods Colloquium University of Northern Colorado

Introduction	Background	Poisson	Parameters	Future
Solar Bea	auty Spots			

Applied Statistics and Research Methods Colloquium University of Northern Colorado

- 4 回 > - 4 回 > - 4 回 >

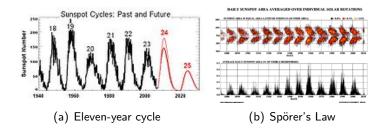
æ

Introduction		Poisson	Parameters	Future
Presentat	tion Outline			

- Introduction
- Backgournd
- Wald Approach
- Statistical Models for Counts Data
- Future Development

Applied Statistics and Research Methods Colloquium University of Northern Colorado

_ →


∃ >

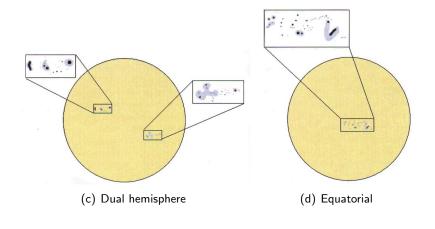
Introduction		Poisson	Parameters	Future
The Phys	ics			

- Sunspot generation a current research area
- Sunspots thought to be the visible counterparts of magnetic flux tubes in the Sun's convective zone
- Differential rotation (coriolis effect) stresses the tubes which puncture the Sun's surface
- Energy flux from the Sun's interior decreases and with it surface temperature
- Sunspot activity cycles about every eleven years
- Early in the cycle, sunspots appear in the higher latitudes and then move towards the equator as the cycle approaches maximum: this is called Spörer's law

Introduction		Poisson	Parameters	Future

Sunspot Cycle and Butterfly Plot

Jamie Riggs


Applied Statistics and Research Methods Colloquium University of Northern Colorado

∃ >

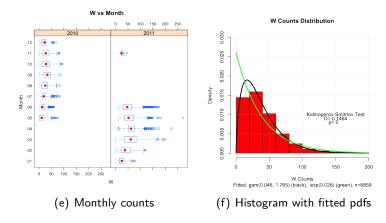
Introduction		Poisson	Parameters	Future
The Astro	onomy			

- First noted sunspots in 364 BC by Chinese astronomer Gan De
- First telescopy in 1610 by English astronomer Thomas Harriot
- Rudolf Wolf established the Wolf Number in 1848
- AAVSO began recording the American Relative number in 1949
- AAVSO Solar Section experienced a serious loss of data
- 14 months of sunspot counts data collected since the loss
- Overall, weighted monthly count averages are assumed to be unbiased estimates of the true monthly sunspot numbers
- No sunspot number standard available so monthly counts are relative to the data provided
- As sunspot cycle in the last 3 months is increasing from a minimum, monthly corrections are anticipated

Introduction	Background	Poisson	Parameters	Future
Sunspot	Types			

Applied Statistics and Research Methods Colloquium University of Northern Colorado

・ 日 ・ ・ ヨ ・ ・


э

Introduction		Poisson	Parameters	Future
The Stat	istics			

- Multiple observers (\sim 80) worldwide
- Each may submit monthly (only \sim 40 do so consistently)
- Three random variables: sunspot counts, observers, and monthly sunspot numbers
- Sunspot numbers are known to follow an approximately 11-year sinusoidal cycle
- The statistical model needs to tie the average monthly sunspot numbers to the observer-reported counts
- The statistical model should predict sunspot numbers

Introduction		Poisson	Parameters	Future

Monthly Submissions and Histogram

Jamie Riggs

Applied Statistics and Research Methods Colloquium University of Northern Colorado

Background	Poisson	Parameters	Future

Wolf, Wald, and Shapley

Jamie Riggs

Applied Statistics and Research Methods Colloquium University of Northern Colorado

	Background	Poisson	Parameters	Future
The Frar	ners			

Wolf, R, 1848.

- Developed the Wolf number (a International sunspot number, relative sunspot number, or Zürich number)
- A quantity measuring the number of sunspots and groups of sunspots on the Sun's surface
- The relative sunspot number R is computed as

$$R = k(10g + s)$$

where

- *s* is the number of individual spots
- g is the number of sunspot groups
- *k* is a factor that varies with location and instrumentation

Jamie Riggs

Applied Statistics and Research Methods Colloquium University of Northern Colorado

< 同 > < ∃ >

	BackBroand			
The Frame	ers			
Subj		nnals Mat	Both Variables ar <i>tistics</i> , 1940, Vol	

- Response, Y, and predictor, X are random variables
- Method of least squares (SLR) usually used
- Fit parameters different for $Y \sim f(X)$ and $X \sim f(Y)$
- Just for fun:

Background

- (1939). "A New Formula for the Index of Cost of Living". Econometrica
- (1939). "Contributions to the Theory of Statistical Estimation and Testing Hypotheses". Annals of Mathematical Statistics
- (June 1945). "Sequential Tests of Statistical Hypotheses". The Annals of Mathematical Statistics
- (1947). Sequential Analysis. New York: John Wiley and Sons
- (1950). Statistical Decision Functions. John Wiley and Sons, New York

	Background	Poisson	Parameters	Future
The Fran	ners			

- Shapley, A.H., Reduction of Sunspot-Number Observations, *Publication of the Astronomical Society of the Pacific*, 1949, Vol. 61, No. 358, pp 13-21.
 - Adapted Wald's method to correct observations from many observers to the American Relative sunspot number
 - Correction factor accounts for variations in equipment and seeing conditions
 - A "statistical weight" per observer is also used

Applied Statistics and Research Methods Colloquium University of Northern Colorado

	Ra	Poisson	Parameters	Future

The American Relative Sunspot Number

Jamie Riggs

Applied Statistics and Research Methods Colloquium University of Northern Colorado

		Ra	Poisson	Parameters	Future
Shapley	via Wald				

$$R_i = k_i (10g_i + s_i) \tag{1}$$

Applied Statistics and Research Methods Colloquium University of Northern Colorado

イロン イヨン イヨン イヨン

æ

		Ra	Poisson	Parameters	Future
Shapley	via Wald				

$$R_i = k_i (10g_i + s_i) \tag{1}$$

$$R_{a} = \frac{\sum_{i=1}^{N} w_{i} k_{i} R_{i}}{\sum_{i=1}^{N} w_{i}}$$
(2)

Applied Statistics and Research Methods Colloquium University of Northern Colorado

イロン イヨン イヨン イヨン

æ

		Ra	Poisson	Parameters	Future
Shapley	via Wald				

$$R_i = k_i (10g_i + s_i) \tag{1}$$

$$R_{a} = \frac{\sum_{i=1}^{N} w_{i} k_{i} R_{i}}{\sum_{i=1}^{N} w_{i}}$$
(2)

$$R_{sm} = \frac{1}{24} \left(N_{i-6} + N_{i+6} + 2\sum_{j=i-5}^{5} N_j \right)$$
(3)

Applied Statistics and Research Methods Colloquium University of Northern Colorado

イロン イヨン イヨン イヨン

æ

		R _a	Poisson	Parameters	Future
The Deri	ivation				

$$Ey_{ij} = \beta_0 + \beta_1 x_{ij}$$

Applied Statistics and Research Methods Colloquium University of Northern Colorado

イロン イヨン イヨン イヨン

æ

		Ra	Poisson	Parameters	Future
The Deri	vation				

$$Ey_{ij} = \beta_0 + \beta_1 x_{ij}$$

$$\Rightarrow R_{sj} = k_i R_{ij}$$
, per Shapley $\beta_0 = 0$, $\beta_1 = 1$

Applied Statistics and Research Methods Colloquium University of Northern Colorado

< □ > < □ > < □ > < □ > < □ >

æ

		Ra	Poisson	Parameters	Future
The Deri	vation				

$$Ey_{ij} = \beta_0 + \beta_1 x_{ij}$$

$$\Rightarrow R_{sj} = k_i R_{ij}, \text{ per Shapley } \beta_0 = 0, \ \beta_1 = 1$$

$$\frac{1}{N} \sum_{j=1}^{n_i} \log R_{sj} = \frac{1}{N} \sum_{j=1}^{n_i} \log k_i R_{ij}$$

Applied Statistics and Research Methods Colloquium University of Northern Colorado

< □ > < □ > < □ > < □ > < □ >

2

		Ra	Poisson	Parameters	Future
The Deri	ivation				

$$Ey_{ij} = \beta_0 + \beta_1 x_{ij}$$

 $\Rightarrow R_{sj} = k_i R_{ij}, \text{ per Shapley } \beta_0 = 0, \ \beta_1 = 1$

$$\frac{1}{N} \sum_{j=1}^{n_i} \log R_{sj} = \frac{1}{N} \sum_{j=1}^{n_i} \log k_i R_{ij}$$
$$\log k_i = \frac{1}{N} \left(\sum_{j=1}^{N} \log R_{sj} - \sum_{j=1}^{N} \log R_{ij} \right)$$
(4)

Jamie Riggs

Applied Statistics and Research Methods Colloquium University of Northern Colorado

イロン イヨン イヨン イヨン

		Ra	Poisson	Parameters	Future
The Deri	vation				

$$Ey_{ij} = \beta_0 + \beta_1 x_{ij}$$

 $\Rightarrow \textit{R}_{\textit{sj}} = \textit{k}_{\textit{i}}\textit{R}_{\textit{ij}}, \ \, \text{per Shapley} \ \, \beta_{0} = 0, \ \, \beta_{1} = 1$

$$\frac{1}{N} \sum_{j=1}^{n_i} \log R_{sj} = \frac{1}{N} \sum_{j=1}^{n_i} \log k_i R_{ij}$$

$$\log k_i = \frac{1}{N} \left(\sum_{j=1}^{N} \log R_{sj} - \sum_{j=1}^{N} \log R_{ij} \right)$$
(4)
$$w_i = \frac{N-1}{\sum_{j=1}^{N} (\log R_{sj} - \log R_{ij})^2 - N \cdot a_i^2}$$
(5)

Jamie Riggs

Applied Statistics and Research Methods Colloquium University of Northern Colorado

	Poisson	Parameters	Future

Poisson Models

Jamie Riggs

Applied Statistics and Research Methods Colloquium University of Northern Colorado

・ロッ ・回 ・ ・ ヨッ ・

ъ

		Poisson	Parameters	Future
D · F	St. 11 . 11			
Poisson L	Distribution			

Poisson probability distribution function

$$f(y_i; \mu_i) = \frac{e^{-\mu_i} \mu_i^{y_i}}{y_i!} = e^{-\mu_i} \frac{1}{y_i!} e^{y_i \log(\mu_i)}, \quad i = 1, 2, \dots, N$$
(6)

Jamie Riggs

Applied Statistics and Research Methods Colloquium University of Northern Colorado

・ロン ・回 と ・ ヨン ・

-

		Poisson	Parameters	Future
Poisson I	Distribution			

Poisson probability distribution function

$$f(y_i; \mu_i) = \frac{e^{-\mu_i} \mu_i^{y_i}}{y_i!} = e^{-\mu_i} \frac{1}{y_i!} e^{y_i \log(\mu_i)}, \quad i = 1, 2, \dots, N$$
 (6)

GLM canonical link to a monotone function of μ_i

$$\log(\mu_i) = \sum_{i,j} \beta_i x_{ij}, \quad i = 1, ..., N, \ j = 1, 2, ..., n_i$$
(7)

Jamie Riggs

Applied Statistics and Research Methods Colloquium University of Northern Colorado

(日) (四) (日) (日) (日)

		Poisson	Parameters	Future
	St			
Poisson I	Distribution			

Poisson probability distribution function

$$f(y_i; \mu_i) = \frac{e^{-\mu_i} \mu_i^{y_i}}{y_i!} = e^{-\mu_i} \frac{1}{y_i!} e^{y_i \log(\mu_i)}, \quad i = 1, 2, \dots, N$$
 (6)

GLM canonical link to a monotone function of μ_i

$$\log(\mu_i) = \sum_{i,j} \beta_i x_{ij}, \quad i = 1, ..., N, \ j = 1, 2, ..., n_i$$
(7)

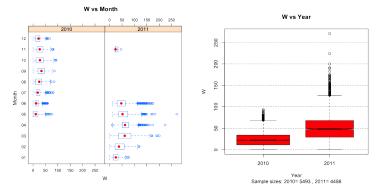
The matrix form including observer, period, and seeing conditions

$$\log(\mu_{\rm f}) = \mathbf{X}\boldsymbol{\beta},\tag{8}$$

Jamie Riggs

Background	Poisson	Parameters	Future

Determination of the k-Coefficients

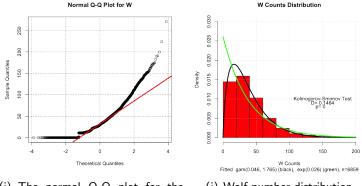

Jamie Riggs

Applied Statistics and Research Methods Colloquium University of Northern Colorado

A ►

	Poisson	Parameters	Future

Determination of the k-Coefficients


(g) Boxplots of Wolf numbers by (h) Boxplots of Wolf numbers by Month Year

Jamie Riggs

Applied Statistics and Research Methods Colloquium University of Northern Colorado

	Poisson	Parameters	Future

Determination of the k-Coefficients

(i) The normal Q-Q plot for the Wolf number.

(j) Wolf number distribution.

Jamie Riggs

Applied Statistics and Research Methods Colloquium University of Northern Colorado

		Poisson	Parameters	Future
To Fix or	Not to Fix			

Should the factor "observer" be a fixed or a random effect?

Jamie Riggs

Applied Statistics and Research Methods Colloquium University of Northern Colorado

- 47 →

		Poisson	Parameters	Future
To Fix o	r Not to Fix			

- Should the factor "observer" be a fixed or a random effect?
- Per Milliken, G.A. & Johnson, D.E., Analysis of Messy Data, Volume 1: Designed Experiments, 1998, Chapman & Hall, Boca Raton, Fl, p. 212.
 - A factor is *random* if its levels consist of a random sample of levels from a population of possible levels.

		Poisson	Parameters	Future
To Fix o	r Not to Fix			

- Should the factor "observer" be a fixed or a random effect?
- Per Milliken, G.A. & Johnson, D.E., Analysis of Messy Data, Volume 1: Designed Experiments, 1998, Chapman & Hall, Boca Raton, Fl, p. 212.
 - A factor is *random* if its levels consist of a random sample of levels from a population of possible levels.
 - A factor is *fixed* if its levels are selected by a nonrandom process or if its levels consist of the entire population of possible levels.

			Poisson	Parameters	Future
GLM wit	h Poisson Er	ror Strue	cture		

- Several models were fitted using the independent variables observer, seeing conditions, and time sequence
- Two error structures were used: Poisson and negative binomial
- The primary criterion for model selection is the ratio of the variance of the model-fitted values to the mean of the model-fitted values. Why?

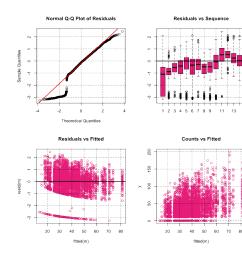
			Poisson	Parameters	Future
GLM wit	h Poisson Err	or Strue	cture		

- Several models were fitted using the independent variables observer, seeing conditions, and time sequence
- Two error structures were used: Poisson and negative binomial
- The primary criterion for model selection is the ratio of the variance of the model-fitted values to the mean of the model-fitted values. Why?
- The final model is

$$\begin{aligned} & \mathsf{og}(y_{ij} = \beta_0 + \beta_1 x_{1ij} + beta_2 x_{1ij} + \eta_{ij}, \\ & x_{1ij} = j^{th} \text{ appearance of the } i^{th} \text{ observer} \\ & x_{2ij} = j^{th} \text{ occurrence of the } i^{th} \text{observer's seeing condition} \end{aligned}$$

			Poisson	Parameters	Future
GLM wit	h Poisson Er	ror Struc	cture		

- \blacksquare The fitted values variance by mean ratio is 3.5173. Prefer <2
- Residual deviance: 8439.5 on 6815 degrees of freedom (try for equality)


Table: ANOVA

	Df	Deviance	Resid. Df	Resid. Dev	P(> Chi)
NULL			6858	9200.01	
x1	40	665.97	6818	8534.04	0.0000
x4	3	94.55	6815	8439.48	0.0000

Jamie Riggs

Applied Statistics and Research Methods Colloquium University of Northern Colorado

GLM with Poisson Error Structure Diagnostics

Jamie Riggs

Applied Statistics and Research Methods Colloquium University of Northern Colorado

GLM with Poisson Error Structure Diagnostics

200 8 150 Counts 100 22 0 10 11 12 13 14 Sequence (year and month) Green X's connected by the curve are a loess fit. Dotted blue curve is NOAA values.

Counts vs Sequence

Black dashed line is loglinear fit. 🛛 🧃 🗖

Jamie Riggs

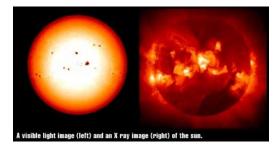
Applied Statistics and Research Methods Colloquium University of Northern Colorado

	Poisson	Parameters	Future

Future Development

Jamie Riggs

Applied Statistics and Research Methods Colloquium University of Northern Colorado

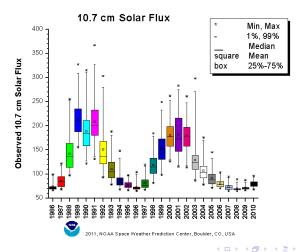

A ►

			Poisson	Parameters	Future
Future Development					

- Introduce an observer's equipment factor (fixed)
- Test for the effect of the Solar hemisphere
- Braid in
 - Optical observations from Europe
 - X-ray observations from GOES-15 satellite
 - 10.7cm radio from Deep Space Exploration Society, Canada, and Australia

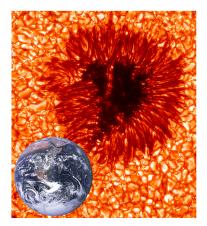
Applied Statistics and Research Methods Colloquium University of Northern Colorado

		Poisson	Parameters	Future
Soft X-ra	iys			



Applied Statistics and Research Methods Colloquium University of Northern Colorado

< ロ > < 回 > < 回 > < 回 > < 回 >


æ

			Poisson	Parameters	Future		
10.7 cm (2800 MHz) Radio							

Applied Statistics and Research Methods Colloquium University of Northern Colorado

			Poisson	Parameters	Future			
It's a Matter of Scale								

Applied Statistics and Research Methods Colloquium University of Northern Colorado

・ロト ・日下・ ・ ヨト

Introdu	ction	Background	Poisson	Parameters	Future

A Generalized Linear Mixed Model for Enumerated Sunspots

Jamie Riggs

Applied Statistics and Research Methods Colloquium University of Northern Colorado

September 7, 2011

Jamie Riggs

Applied Statistics and Research Methods Colloquium University of Northern Colorado

-∢ ≣ ▶