Multidimensional Scaling (MDS)

Multidimensional Scaling (MDS)
Dimension reduction method
Proximity near when geometric distance short, far when long
Proximity matrix of (often Euclidean) distances $\boldsymbol{B}$ determined from feature matrix $\boldsymbol{X}$
Use singular value decomposition of $\boldsymbol{B}$ to obtain eigenvalues ranked largest to smallest
Largest eigenvalues “group” features into lower dimensional combinations
Largest eigenvalues “group” features into lower dimensional combinations
Adequacy of reduced $k$-dimensions criterion
$$P_k =  \frac{\sum_{i-1}^k \lambda_i}{\sum_{i-1}^{n-1} \lambda_i}$$
$P_k \ge 0.8$ suggest a reasonable fit
If negative or complex eigenvalues, $\boldsymbol{B}$ not PD
Adequacy suggested by Mardia, KV, Kent, JT, and Bibby, JM, (1979). Multivariate Analysis. London: Academic Press
$$P_k^(1) =  \frac{\sum_{i-1}^k \mid \lambda_i \mid}{\sum_{i-1}^{n-1} \mid \lambda_i \mid} \hskip 5mm \text{and} \hskip 5mm P_k^(2) =  \frac{\sum_{i-1}^k \lambda_i^2}{\sum_{i-1}^{n-1} \lambda_i^2}$$
If negative or complex eigenvalues, $\boldsymbol{B}$ not PD
Adequacy suggested by Sibson, R, (1979). Studies in the robustness of multidimensional scaling: Perturbational analysis of classical scaling. Journal of the Royal Statistical Society B, 41, 217-229.
    • Trace criterion: Choose $k \ \ni \sum_{i=1}^k \approx \sum_{i=1}^n$
    • Magnitude criterion: Accept as genuinely positive only those eigenvalues whose magnitude substantially exceeds the absolute value of the largest negative eigenvalue