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A Generalized Linear Mixed Model for Enumerated Sunspots

Abstract

Sunspot count data from May, 2010 through June, 2017 were provided by the American Asso-
ciation of Variable Star Observers Solar Division to estimate monthly sunspot numbers. The
data include sunspot counts for the sunspot cycle 24 minimum to minimum. Monthly estimates
are determined from a mixed effects, loglinear model constructed specifically from these count
data. The observer is treated as a random effect, and the observing condition and observer
experience as fixed effects. This model differs in the treatment of the data distribution assump-
tions of the existing linear model developed by Shapley (1949) from Wald (1940), which models
sunspot numbers by variance-stabilizing transformations prior to forming a weighted average
of the monthly counts. The loglinear model methodology meets or exceeds the performance
criteria set by Shapley, and provides a method for determining the relative sunspot number re-
ported monthly by the American Association of Variable Star Observers Solar Division. Model
improvements using additional explanatory fixed effects and further investigation of random
effects probability distribution and link function combinations are discussed.

Keywords: Sunspots, Poisson distribution, gamma distribution, log link

1 Introduction

Sunspot counts data were provided to estimate monthly sunspot numbers from qualifying American
Association of Variable Star Observers (AAVSO) members who submit observations on a monthly
basis to the AAVSO Solar Division. The counts from each observer are checked for consistency
and completeness, and then are combined such that the resulting sunspot numbers attempt to have
minimal observational error. Effectively, the individual’s monthly sunspot count is adjusted to the
overall, weighted monthly average of all the qualifying numbers. As such, the overall, weighted
monthly averages are assumed to be unbiased estimates of the true monthly sunspot numbers. As
no sunspot number standard is available for this study, the corrections are therefore relative to the
data provided. As such, ”tuning” is required for each month in the study, as well as each successive
month following the last month used in this study. This tuning is consistent with historical (Shapley,
1949; Taylor, 1985; Schaefer, 1993), and current (Clette et al., 2007) treatments.

Section 2 is an overview of the sunspot counting literature; Section 3 discusses the statistical
model used by previous correction factor authors; Section 4 gives a brief tutorial on the mixed
effects loglinear statistical model used in this paper; Section 5 details the analysis of the correction
factors using a mixed effects loglinear model; Section 6 is a plan for future improvements; and
Section 7 are the conclusions.

2 Background

The American sunspot number, Ra, is a relative index of daily and monthly sunspot activity,
and the American Association of Variable Star Observers (AAVSO) Solar Division’s program of
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data-gathering and analysis has been active since its inception in 1944. Shapley (1949), Taylor
(1985), and Schaefer (1993) provide descriptions of the method of sunspot numbers data reduction.
Schaefer (1997) and Foster (1997) discuss enhancements and remedies to the data reduction needed
for time-based changes in the reduction outcomes. These enhancements and remedies will not be
discussed in this paper.

AAVSO observer raw data are submitted monthly to the Solar Division as sets of date- and
time-stamped values which are converted to a sunspot number according to R. Wolf such that

Ri = 10gi + si, (1)

where i designates an individual observer for Ri, the adjusted sunspot number, gi the number of
sunspot groups reported, and si the number of reported spots. Taylor (1985) states that the group-
ing scheme is the evolutionary classification system outlined by M. Waldmeier (1961). Individual
sunspots with an extent of 0.04 solar degrees and larger are counted.

Mid-month following the month of observation, after (usually) thirty or more reports have been
received and initially processed, the computation of provisional sunspot numbers proceeds through
application of the relation from Shapley (1949),

RA =

∑N
i=1wikiRi∑N
i=1wi

, (2)

for each day of the computational month. Ri is the daily sunspot count for individual contributor
i, and RA is the relative sunspot number after reducing all contributor counts, Ri. The parameter
ki adjusts for observer i counting conditions, and wi is a derived weight that measures how well ki
adjusts to a standard for observer i.

According to Taylor (1985), the number of observers per day is expected to exceed eighteen.
However, this number depends upon the phase of the sunspot cycle, on prevailing local weather
conditions, and on observer confidence, especially during periods of minimal sunspot activity. The
monthly American sunspot number, Ra, is formed by averaging the daily sunspot numbers (RA)
across the number of days in the month of interest.

Final American sunspot numbers are obtained when observer reports have been received. The
monthly mean of the final values allows the calculation of the statistic, Rsm, the smoothed mean
relative sunspot number. This number is computed from Waldmeier (1961) and is reproduced in
Taylor as:

Rsm =
1

24

(
Ni−6 +Ni+6 + 2

5∑
−5

Ni

)
. (3)

In Equation 3, N±6 is set equal to the sunspot mean number 6 months prior to the month for which
Rsm is being calculated, and to the sunspot mean number 6 months after the month for which Rsm
is being calculated, respectively. The intermediate successive month’s mean values are taken under
the summation. Thus, this moving average sunspot number lags six months behind the most recent
month’s sunspot determination.
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3 Derivation of the Parameters k and w

We now examine how the correction parameters ki and wi are derived. Taylor (1985), with reference
to a statement by Shapley (1949), reports that the data reduction method for determining the
correction parameters comes from Wald (1940). Wald developed a model relating two random
variables, where a random variable consists of observations sampled from a larger population. His
method differs from simple linear regression in that simple linear regression assumes the independent
variable can be measured without error, whereas Wald’s method makes no such assumption.

3.1 Problem Formulation

In the American sunspot number calculations, it is assumed that no two observers will report the
same Wolf number. However, the true Wolf number is considered to be at or close to the mean value
of all the submitted counts. Shapley (1949) shows the expected value (mean) to be a reasonable
estimate after data processing. The problem is to find parameters that adjust each observers daily
submitted numbers to the expected value. Shapley uses a data reduction method developed by
Wald (1940) to find values of the parameter ki, where i indicates the ith observer’s k value.

Wolf numbers are derived from counts of sunspots and sunspot groups. Counts data do not
follow a Gaussian probability distribution function (PDF), which violates a Wald condition of
using data that follow a Gaussian distribution. The sunspot numbers therefore are tranfromed
using a natural logarithm. As counts of zero connot be transformed, Shapley drops them, which
is considered poor practice by statisticians. We will drop zeros for this discussion, and incorporate
zeros in the generalized linear model sections below.

We wish to fit a straight line to two variables Ri and RA, defined above, each with uncorrelated
errors according to Wald (1940). Madansky (1959) compared least squares estimation methods,
two grouping methods, variance components analyses, and estimation by cumulants for a specific
data set. The grouping method of Wald was shown to be one of the best straight line estimation
methods among the 15 variants studied. Regardless, the fit from data grouping will be subject to
the following two conditions in addition to Ri and RA following a Gaussian PDF:

1. The fitted straight line relating y to x can be determined without making a priori assumptions
on independence of the observed values of the x and y pairs relative to the standard deviations
of the errors of x and y.

2. The unknown standard deviations of the two variable’s errors can be well estimated from the
observed values of x and y. The precision of the estimates increases with the sample size of
the variable pairs and give asymptotically exact values with very large sample size.

In the context of sunspot numbers, consider two sets of daily random vectors with the random
variable elements X = {X1, . . . , XN}, (Xj = log(Rij)) and Y = {Y1, . . . , YN}, (Yj = log(RAj)),
where i indexes the observer and j indexes the day. Let the expected values of the elements of
the X and Y vectors be denoted as vectors with elements µX = {µX1, µX2, . . . , µXN} and
µY = {µY 1, µY 2, . . . , µY N}. The expected values are the true but unknown values of random
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variables of X and Y . Let

εj = Yj − µY j and ηj = Xj − µXj , (4)

denote the respective errors of the Yj and Xj , and in vector form as ε = {ε1, ε2, . . . , εN} and
η = {η1, η2, . . . , ηN}. We make the following assumptions in which E(·) is denotes the expected
value of the parenthetical argument, and Var(·) denotes the variance of the argument:

A1) The random variable elements of the random vector ε are identically independently distributed
(iid) such that E(εjεk) = 0, for all j 6= k and Var(εj) <∞.

A2) The random variable elements of the random vector η are iid such that E(ηjηk) = 0, for all j 6=
k and Var(ηk) <∞.

A3) The random variables εj and ηj are uncorrelated such that E(εjηj) = 0 for all j = 1, . . . , N .

A4) A simple linear relation holds between the true values of Yj and Xj as

µY j = αµXj + β, , j = 1, . . . , N. (5)

where α is the slope and β is the y-intercept of the fitted straight line.

Let εl follow an iid PDF which we may denote as fε(εj) and ηj follow an iid PDF which we may
denote as fη(ηj) both for all j = 1, . . . , N . The problem of fitting a straight line to two error-prone
random variables may be formulated as follows:

1. xj are the realizations of Xj

yj are the realizations of Yj

2. The true values of µXj , µY j (j = 1, . . . , N), α, and β are unknown.

3. From the realizations xj and yj we estimate

(a) α and β

(b) the standard deviation of ε denoted as σε

(c) the standard deviation of η denoted as ση

3.2 Parameter Estimates

The basis of the parameter estimation for a straight line fit between two variables with respective
associated errors is the grouping of the variable point pairs (xj , yj). For purposes of discussion, the
xj are considered to have no apparent clustering along the x-axis. These N data pair values are
divided into two groups. Let

a1 =
1

N

 m∑
j=1

xj −
N∑

j=m+1

xj

 and a2 =
1

N

 m∑
j=1

yj −
N∑

j=m+1

yj

 , (6)
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for m = bN/2e, where b·e denotes the nearest integer. Then we estimate the slope α as

α̂ =
a2
a1
. (7)

It can be shown that α̂ is a consistent estimator of α; i.e., as N →∞, α̂→ α. Shapley (1949) sets
α̂ = 1 so only the intercept need be estimated.

The intercept β of the regression line is estimated as

β̂ = µ̂y − αµ̂x ≡ µ̂y − µ̂x (8)

where

µ̂x =
1

N

N∑
i=1

xj and µ̂y =
1

N

N∑
j=1

yj . (9)

The estimate β̂ can be shown to be a consistent estimator of β.
Consistent estimators of the variances for σ2ε and σ2η use the following relationships:

σ2η =
[
σ̂2x − σ̂xy

] N

N − 1
(10)

σ2ε =
[
σ̂2y − σ̂xy

] N

N − 1
(11)

where

σ̂x =

√√√√ 1

N

N∑
i=1

(xi − µ̂x)2 (12)

σ̂y =

√√√√ 1

N

N∑
i=1

(yi − µ̂y)2 (13)

σ̂xy =
1

N

N∑
i=1

(xi − µ̂x) (yi − µ̂y) (14)

3.3 Confidence Interval for β

For β̂ = µ̂y − µ̂x, we have that

β̂ − β = (µ̂y − µy)− (µ̂x − µx) = η̂ − ε̂. (15)

Let t0 be the critical value of the t-statistic for a prespecified confidence level, a CI for β then is(µ̂y − µ̂x)− t0

√
(σ′y)

2 + (σ′x)2 − σ′xy
N − 2

, (µ̂y − µ̂x) + t0

√
(σ′y)

2 + (σ′x)2 − σ′xy
N − 2

 (16)

where all the terms are defined as above.
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3.4 The k Value

Wald’s parameter estimates in Equations 8 and 9 are converted into the familiar k-factors as follows:

β̂ = µ̂y − µ̂x

=
1

N

N∑
j=1

yj −
1

N

N∑
i=1

xj

=
1

N

 N∑
j=1

yj −
N∑
i=1

xj


=

1

N

 N∑
j=1

logRAj −
N∑
i=1

logRij

 (17)

Taking the antilog of β̂, we obtain ki as

ki = eβ̂ =

 N∏
j=1

exp

(
RAj
Rij

)1/N

, (18)

where j = 1, 2, . . . , N is the number of days chosen to determine ki.

3.5 The w Value

Shapley (1949) defines the weighting factor wi as

wi =
N − 1∑N

j=1 (logRAj − logRij)
2 −Nβ̂2

. (19)

Recall that wi is a measure of how well ki adjusts to the standard of daily averages. It is the inverse
of the variance (square of the standard deviation) of deviation of the observed daily counts from
the daily average from the Shapley (using Wald) fitted deviation of the daily observered counts
from the daily average counts.

The current implementation of the AAVSO is to set wi to 1 for each vetted observer. All others
have a zero weight.

4 Statistical Models for Counts Data

Models used by statisticians for counts data are part of a broad class of models called generalized
linear models (see McCullagh and Nelder (1989)). Generalized Linear Models (GLMs) are specified
(Agresti, 1998) by three components: a random component, which identifies the response variable
probability distribution, in this case the Poisson PDF or the negative binomial PDF for sunspot
numbers; a systematic component, which for our case includes a matrix of observer designators, the
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date and time of the observations, the seeing conditions, and the experience level; and a function,
called a link, that specifies the relationship between the expected value of the sunspot number
random variable and the systematic component, e.g., a natural log transformation.

The modeling method used by Shapley approximates the sunspot number response with a
Gaussian distribution by log-transforming the count data. This transformation is intended to
stabilize the variance, as the counts distribution expected value changes with the variance. That
is, E(Y ) = V ar(Y ), where E(Y ) denotes the expected value of the Poisson-distributed sunspot
numbers, Y , and V ar(Y ) denotes the variance (the square root of which is the standard deviation)
of the sunspot numbers. However, log transformation of a Poisson distribution does not always
guarantee a resulting normal distribution particularly with low count values. With GLMs, if the
link results in additive predictor variables, it is not necessary to also stabilize the variance or
produce normality as with normal linear regression.

Consider sunspot numbers submitted by the various observers to be treated as independent
Poisson random variables. Let yi denote the sunspot numbers of the ith observer, and µi =
E(Yi) denote the expected value of the ith observer’s sunspot count, i = 1, 2. . . . , N . The Poisson
probability distribution function is

f(yi;µi) =
e−µiµyii
yi!

= e−µi
1

yi!
eyi log(µi) (20)

for nonnegative integer values of yi. For the Poisson distribution, a GLM links a monotone function
of µi to explanatory variables (e.g., observers) through a linear model. The canonical link function
is the log link such that

log(µij) = β0 +
∑
i

βixij , i = 1, . . . , N, j = 1, 2, . . . , ni. (21)

In this GLM, xij are the observer sunspot counts j = 1, 2, . . . , ni of the i = 1, 2, . . . , N observers.
Model 21 is called a loglinear model.

The matrix form of Equation 21 is

log(µ) = Xβ∗, (22)

where µf is the vector of mean sunspot numbers for each observer. X is the matrix of observer
identifiers, the date and time of each observer’s counts, the seeing conditions, and the experience
level at the time of each observer’s count. β is the parameter vector that is determined from
maximum likelihood estimation.

The X matrix contains two types of predictor effects: random effects, which are a sample of all
possible levels from the populations of these effects; and fixed effects, which are all possible levels
of these effects. We can, therefore, partition X into a random effects component matrix X1, and
a fixed effects component matrix X2. We now have a mixed loglinear model, a Generalized Linear
Mixed Model (GLMM), that may be written as

log(µ) = Xβ +Zu, (23)
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where µ is the vector of mean sunspot numbers for each observer, X is the matrix of date and time
indicators, seeing conditions, and the level of experience of the observers, and the β is the vector
of fixed effects parameters, Z is the random effects matrix of observer identifiers, u is the random
effects parameter vector to be estimated.

The Shapley approach to modeling sunspot numbers depends upon a sufficient transformation
of a counts data distribution to follow a Gaussian distribution. The transformation is required
to force homogeneous variance, though there are usually so-called outliers which, using a counts
distriution, usually are not outliers. Bias is introduced when Gaussian outliers are assumed, and
may need to be removed to obtain a stable transformation. Thus, information contained by the
outliers is lost to the analysis. In addition, biased model parameters under-estimate the residual
error of the model which often assigns significance to model coefficients which would be otherwise
benign.

The GLMM is specifically designed to model counts data that follow a counts distribution. No
data need be removed as the counts distribution is skewed in the direction of larger counts. The
error structure used to model the counts distributions class accounts for overdispersion of residuals,
when the mean of the counts is not equal to the variance of the counts. Hence, no information is
eliminated due to the thick, right-tailed behavior of the counts distribution. Further, observer is
a random effect that GLMM partitions into counts variance and observer variance. The observer
random effect variance often follows a probability distribution that is different than that of the
counts response, and GLMM allows for these different variance distributions in the same model.
The Wald method must force all variance structures into Gaussian distributions, which can result
in biased estimates, and may need adjustments over time. Dissimilar variance structure modeling
in GLMMs leads to correct determination of unbiased model parameter estimation and significance.
Modern GLMM construction produces monthly sunspot number estimates that are more efficient
and consistent than the Shapley method for assumed Gaussian-distributed data. See Riggs and
Lalonde (2017) for further information on counts models.

5 Generalized Linear Mixed Model Construction

We now examine the AAVSO sunspot count data. The analysis includes a description of the data
set, parameter estimation via a quasi-Poisson-distributed loglinear mixed effects model, and an
assessment of the validity of the model. The data spans from May 2010 through June, 2017. They
were submitted to the AAVSO Solar Division by AAVSO members. The numbers of submissions by
each member vary for each month, as does which members make the submissions. For this reason,
observer is treated as a random effect in the modeling process. The quasi-Poisson distribution
makes a linear adjustment to the Poisson variance to account for the sunspot numbers having
variance larger than the mean:

mean = µ, variance = µ+ φµ, (24)

in which φ is a multiplier to inflate the variance over the value of the mean. When φ = 0, the
quasi-Poisson distribution degenerates to the equi-dispersion Poisson distribution.
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5.1 Sunspot Numbers Data Set

We begin the examination of the sunspot data set with an exploratory analysis. This analysis
provides an overview of the data set contents that are important for constructing a sufficient model
of sunspot numbers. We determine the probability distribution characteristics of the submitted
counts and the observer random effect.

A summary of the data set in Tables 1 and 2 lists the number of cases by observer (the obs
column), and by experience level (the r column) though not for all observers and experience. The
number of cases of the observer seeing conditions (the see column) are given for all four levels of
”E” for excellent, ”F” for fair, ”G” for good, and ”P” for poor. The estimates of the minimum and
maximum (Min and Max), the first and third (1st and 3rd) quartiles, the median (Median) and the
mean (Mean) are given for year (the year column), month (the mon column), day (the day column),
and Wolf number (the w column). A possible indicator that w does not follow a normal (Gaussian)
distribution is shown by the large absolute difference (49 - 58.92 = 9.92) between the median and
the means of the respective variables. This difference is greater than 15% of the interquartile range
of 89 - 23 = 66. When the median and mean are approximately equal, the distribution is likely to
be symmetric, which is a characteristic of a normal distribution. We test the assumption that w is
normally distributed below.

Table 1: 201706 Summary of Sunspot Numbers

obs jd year mon day

ARAG : 2553 Min. :1721096 Min. :2010 Min. : 1.00 Min. : 1.00
CHAG : 2340 1st Qu.:2456060 1st Qu.:2012 1st Qu.: 4.00 1st Qu.: 8.00
BRAB : 2335 Median :2456646 Median :2013 Median : 7.00 Median :16.00
BROB : 2065 Mean :2456364 Mean :2013 Mean : 6.57 Mean :15.72
KNJS : 1950 3rd Qu.:2457281 3rd Qu.:2015 3rd Qu.: 9.00 3rd Qu.:23.00
HOWR : 1938 Max. :2457935 Max. :2017 Max. :12.00 Max. :31.00
(Other):46664

Table 2: Summary of Sunspot Numbers

see g s w r silso

E:10935 Min. : 0.000 Min. : 0.00 Min. : 0.00 0000A :24894 Min. :0.0000
F:18423 1st Qu.: 2.000 1st Qu.: 8.00 1st Qu.: 32.00 3000F : 9764 1st Qu.:0.0000
G:25556 Median : 4.000 Median : 19.00 Median : 60.00 2500E : 7766 Median :0.0000
P: 4931 Mean : 4.105 Mean : 25.45 Mean : 66.51 3500G : 4618 Mean :0.3288

3rd Qu.: 6.000 3rd Qu.: 37.00 3rd Qu.: 95.00 1000B : 4228 3rd Qu.:1.0000
Max. :18.000 Max. :204.00 Max. :293.00 1500C : 3059 Max. :1.0000

(Other): 5516

A example of the range of counts submitted across all the observers in any one month of data
is shown in Figure 1. It is a plot of the minimum, maximum, and average of the daily submitted
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counts for June, 2017. This type of plot is produced for each month of submitted sunspot counts
as they are obtained from the observers.

Figure 1: Raw average sunspot count by day of the month.

Figure 2 shows the pairwise scatter plots of the group number g, the sunspot count s, and the
Wolf number w including a LOESS fit (solid red curve). The g versus s plot (top row, second
panel) shows that as the number of sunspots s increases from 0 to 200, the number of groups
g increases from 0 to 20, with several large group numbers of just a few sunspots. The scatter
shape is increasing for both the groups and the sunspot numbers. The LOESS curve shows an
increasing, convex bivariate relationship. The w versus s plot (last row, second panel) depicts a
strong association for increasing w as s increases. The scatter appears nearly constant throughout
the range of w. The LOESS fit is nearly linear. The w versus g (last row, first panel) also has a
LOESS fit that appears linear and increasing w with increasing g. The covariance is non-constant
throughout the range of w, first increasing at small to medium values of g and w, and then decreasing
for medium to large values of g and w. The nonhomogeneous variance of w must be accounted for
in a sunspot model.

Because sunspot numbers are cyclical, and because the counts data extend from a lower bound-
ary of a quiescent Sun to an increasingly active Sun, ithen returning to a quiescent Sun, the
month-over-month variability in sunspot numbers is first increasing and then decreasing. This may
be seen in Figure 3. The median sunspot numbers (red dot in the boxes) show a slightly oscillating
increasing trend beginning with the May 2010 box plot then decreasing to June 2017box plot. Fig-
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Figure 2: Scatter plots of sunspot groups g, numbers s, and Wolf numbers w with LOESS fits.
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Figure 3: Box plots of raw Wolf number (w) by
month and year.

Figure 4: Box plots of raw Wolf number (w) by
year.

ure 4 shows a clear difference among the years from 2010 and 2017. This information is important
for accounting for the variance of the sunspot count model for time effects.

Figure 5 has box plots of the four levels of seeing conditions reported by the observers for each
submitted sunspot count. The box plots show the skewness in the right tail of the distribution as
indicated by the extended upper whiskers when compared with the lower whisker length. The 95%
confidence-sized notches at the horizontal median bars indicate that the medians of the E, F , and
G seeing levels aresimilar. These differ significantly from that of the median of the P level, which
is expected.

The ranks in Figure 6 shows the nine differeing levels of experience of the AAVSO observers. Of
the ranked observers, 1000B suggests an overall lower count. The model examined the significance
of the rankings in earlier versions of the model. Until further examination, observer rank is removed
from the current model. The unlabeld rank is of no consequence with rank removed from the model.

We now examine the distribution characteristics of the Wolf number w. Figure ?? shows a
histogram of the w data. The bar heights are not symmetrical and skewed to the right. This is
consistent with the normal Q-Q plot result that the w data are not normally distributed. TFigure 8
shows a normal quantile-quantile (Q-Q) plot. The black points of the w data do not follow the black
solid line, which marks a normal distribution pattern, on the left side of the plot, w does not follow
a normal distribution. However, we shall use the quasi-Poisson distribution in the construction of
the counts model.
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Figure 5: Box plots of raw Wolf number (w) by
month and year.

Figure 6: Box plots of raw Wolf number (w) by
year.

5.2 Mixed Effects Loglinear Model Analysis

A generalized linear mixed model (GLMM) of the form in Equation 23 was fitted from the sunspot
data. Unlike the Shapley method, all levels of observer experience are used as the model can dis-
criminate the more experienced observers from novices. Also unlike the Shapley method, submitted
zero counts are used as GLMM has no issues with zeros. The parameters of the GLMM are esti-
mated using maximum likelihood estimation method (Laplace approximation) that is numerically
equivalent to the numerical solution to the marginal density integral of y given the vectors β and
a. The GLMM reduces to:

y ∝ exp( year + month + seeing + observer ), (25)

where µ is the model counts outcome, year (2010 and 2017) is the year the observations were
submitted, month (1-12) is the month of the year the sunspots were counted, and seeing is the
observing condition (poor, fair, good, excellent) reported by each observer. The observer is treated
as a random effect, and the associated variance component is combined with the residual error to
test the fixed effects. The variance component of the observer effect for the 59,845 observations is
in Table 3.

The fixed effects analysis of the GLMM parameter estimates are in Table 4. Each of the levels
of the fixed effects of year, month, and seeing condition, significantly accounts for a portion of the
variability of the counts data. This is indicated by the less than 0.01 values of all the levels of
the fixed effects in the Pr(> |z|) column. The year and month significance is attributed in part
to the cyclicity of the sunspot counts. Seeing conditions are significant for the obvious fact that
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Figure 7: The non-Gaussian histigram for Wolf
number w.

Figure 8: The normal Q-Q plot for Wolf
number, w.

Table 3: Random effects values

Groups Name Variance Std.Dev.
x1 (Intercept) 0.041895 0.20468

cloud cover obscuration, e.g., compromises the counting process. Experience level, i.e., the lifetime
number of observer submissions did not significantly account for a portion of the variability in the
sunspot counts in earlier models, so further work is needed to define observer experience levels.

The results discussed in the preceding paragraph dictate that the estimated sunspot numbers are
determined from the the year, month, and seeing conditions that are reported daily. A discussion
of the method used to determine these estimates is given in Section 5.4.

5.3 Mixed Effects Loglinear Model Diagnostics

Table 5 is a summary of the model fit statistics. The dev/df ratio of 13.10802 and the σ2/µ
ratio of 23.60726, both indicate the model is overdispersed even after compensating by using a
quasi-Poisson PDF. This overdispersion may be due in part to incorrectly defined seeing condition
levels, incorrect assumption on the distribution of the random effect (observer), or lack of additional
explanatory variables such as type of equipment used. These possibilities will be explored in a future
paper, including the use of a negative binomial PDF which provides more flexibility in defining the
relationship between the mean and the vairance of the sunspot numbers.

Figure 9 shows four diagnostic plots that assess model fit. The Normal Q-Q plot (upper left
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Table 4: 201706 Parameter Estimates

Estimate Std. Error t-value Pr(>|t|)
(Intercept) 3.2323 0.0324 99.7725 0.0000

seeF -0.1886 0.0071 -26.3757 0.0000
seeG -0.1014 0.0062 -16.3149 0.0000
seeP -0.2928 0.0105 -27.9321 0.0000

silso1 0.1058 0.0478 2.2118 0.0270
year2011 1.2053 0.0154 78.3659 0.0000
year2012 1.2234 0.0153 79.8128 0.0000
year2013 1.3184 0.0153 86.2540 0.0000
year2014 1.5070 0.0152 99.2556 0.0000
year2015 1.0089 0.0156 64.7658 0.0000
year2016 0.4038 0.0166 24.3746 0.0000
year2017 -0.1264 0.0207 -6.1011 0.0000

mon2 -0.1555 0.0118 -13.1558 0.0000
mon3 -0.0790 0.0109 -7.2487 0.0000
mon4 0.0311 0.0109 2.8562 0.0043
mon5 0.0333 0.0104 3.2129 0.0013
mon6 -0.1714 0.0109 -15.7266 0.0000
mon7 -0.0860 0.0106 -8.1068 0.0000
mon8 -0.0702 0.0104 -6.7206 0.0000
mon9 0.0607 0.0101 6.0288 0.0000

mon10 0.0081 0.0106 0.7586 0.4481
mon11 0.0463 0.0109 4.2478 0.0000
mon12 -0.0431 0.0116 -3.7200 0.0002

panel) of the residuals shows the upper tail of the residuals are concave (upward opening) over
what is expected of a normal distribution. This is an indication that the residuals distribution is
skewed to the right (in the direction of larger counts), which is in line with the overdispersion we
saw earlier. So the distribution of the residuals is likely to follow a skewed distribution, commonly,
a gamma PDF. The Residuals vs Fitted plot (lower left panel) shows a clear funnel shape indicating
nonhomogeneous variance in the fitted values. The sharp truncation for small values of the residuals
suggests the GLMM does not manage the inflation of the number of zero counts; a further feathure
for future investigation using a zero-inflated PDF. The larger fitted values, fitted(m), has more
variance in the residuals residual(m) than do the smaller fitted values. The model may be improved
with an error structure defined by a gamma PDF.

Figure 9 also shows the Poisson variance by mean plot (upper right panel) shows non-constant
variance across the mean values. Possible remedies include the use of a PDF with more flexible
mean-to-variance relationship. Finally, the Residuals vs Sequence plot (lower right panel) reveals
unexplained cycling over time along with time-varying variance known as volatility. This cycling
is not unexpected, and is currently being investigated to incorporate time-dependent periodicity.
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Table 5: Model Fit by the Laplace Approximation Estimation Method

AIC BIC logLik deviance df dev/df groups: x1 σ2/µ
161447 161625 -80700 161399 12313 13.10802 53 23.60726

Figure 9: Generalized loglinear mixed model diagnostic plots.
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5.4 Ra Estimation

We obtain the monthly GLMM-estimated means for sunspot numbers from the fixed effects. The
variance of these estimates incorporates the observer random effect variance component. The
monthly means are calculated by holding the seeing condition at the excellent level, then varying
the year and month in the GLMM to produce the estimates. From Equation 22,

m = exp(Xβ̂∗)⇒ log(m) = Xβ̂∗

=
[
j Xf

] [ µ̂

β̂

]
(26)

= Xf β̂ + µ̂j,

where m is the vector of model-fitted sunspot numbers; β̂∗ is the vector of estimated model pa-
rameters that includes the overall mean parameter and the p = 3 coefficients of the x1 to x3 fixed
effects of year, month, and seeing conditions, respectively, for the observers as random effects; and
j is the N × 1 vector of ones that is N =

∑n
i=1 ni, i = 1, 2, . . . , n numbers of submissions for each

of the n observers. Note that the β̂∗ vector has been partitioned into two parts, the overall mean
µ̂ and the fixed effects parameter estimates β̂. The design matrix X is the N × (p + 1) matrix of
the indicators of the overall mean sunspot counts and the x1 to x3 fixed effects. Thus, noting that
each column of the X matrix is labeled µ, x1 to x3 for convenience, and the labels are not a part
of the actual matrix,

X =



µ x1 x2 x3
1 1 0 0
1 1 0 0
1 1 0 0
...

...
...

...
1 0 1 0
1 0 1 0
1 0 1 0
...

...
...

...
1 0 1 0
1 0 1 0
1 0 1 0
...

...
...

...
1 0 0 1
1 0 0 1
1 0 0 1



=
[
jN×1,XfN×p

]
,

where the design matrix X is partitioned to be conformal with the partitioned parameter vector
in Equation 26.
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To obtain relative sunspot numbers, we solve Equation 26 for µ̂:

µ̂j = log(m)−Xf β̂

⇒ eµ̂j = m− eXf β̂

⇒ θj = ∆ (27)

where θ = eµ̂ and the vector ∆ = m − eXβ̂. Taking the means by month of the elements of the
vectors on both sides of Equation 27 we have

RA =
1

N

N∑
i=1

θi =
1

N

N∑
i=1

δi. (28)

It is important to note that the variance of the random effect of observer has been accounted for
by the model, and hence the variance of the monthly estimates incorporate the observer variance.
The monthly mean sunspot numbers from the May 2010 through June 2017data set are given in
Table 6.

Table 6: Year Month (ym) Relative Sunspot Numbers with 99% CI

ym Ra lci99 uci99 aavso silso

2010.05 23.6771 23.1373 24.2169 8.4000 8.7000
2010.06 18.3859 17.8968 18.8750 11.0000 13.6000
2010.07 20.6128 20.1583 21.0673 15.2000 16.1000
2010.08 20.3170 19.8237 20.8103 18.3000 19.6000
2010.09 23.9106 23.3989 24.4223 22.8000 25.2000
2010.10 22.7334 22.2450 23.2219 21.0000 23.5000
2010.11 23.4543 22.9273 23.9813 20.9000 21.6000
2010.12 22.4281 21.7819 23.0743 13.9000 14.5000
2011.01 76.1685 74.4550 77.8819 17.7000 18.7000
2011.02 66.4790 64.9822 67.9759 29.1000 29.6000
2011.03 71.3016 69.8293 72.7738 48.0000 55.8000
2011.04 78.6047 76.9263 80.2832 47.3000 54.4000
2011.05 79.8776 78.2865 81.4686 37.3000 41.5000
2011.06 65.3251 63.9522 66.6980 35.2000 37.0000
2011.07 71.3799 69.8104 72.9494 41.5000 43.8000
2011.08 73.7195 72.2756 75.1634 42.4000 50.5000
2011.09 83.9009 82.7985 85.0033 73.8000 78.0000
2011.10 79.1393 77.7815 80.4972 78.9000 88.0000
2011.11 80.3451 78.6221 82.0681 84.6000 96.7000
2011.12 74.6987 73.0532 76.3442 65.8000 73.0000
2012.01 78.2991 76.7451 79.8531 55.8000 58.2000
2012.02 66.1308 64.7239 67.5377 29.2000 33.1000

Continued on next page



Sunspot Numbers
Friday 2nd June, 2017

Jamie Riggs, PhD, IAA
Page 19 of 24

Table 6: Year Month (ym) Relative Sunspot Numbers with 99% CI

ym Ra lci99 uci99 aavso silso

2012.03 73.7753 72.4565 75.0940 53.1000 64.1000
2012.04 78.3510 76.0409 80.6611 51.4000 55.2000
2012.05 83.8057 82.3436 85.2679 61.8000 69.0000
2012.06 68.3582 67.1488 69.5676 59.7000 64.5000
2012.07 75.6738 74.4001 76.9476 64.2000 51.3000
2012.08 74.4590 73.2146 75.7033 57.7000 63.1000
2012.09 84.7912 83.3408 86.2417 57.7000 61.5000
2012.10 81.5436 80.0029 83.0842 48.3000 53.3000
2012.11 83.8646 82.1836 85.5456 56.7000 61.4000
2012.12 75.7323 74.1392 77.3254 37.4000 40.8000
2013.01 88.1836 86.5359 89.8314 63.8000 62.9000
2013.02 76.2369 74.7503 77.7235 37.8000 38.0000
2013.03 80.9833 79.4589 82.5076 50.6000 57.9000
2013.04 91.2002 89.6655 92.7349 70.6000 72.4000
2013.05 91.4373 89.8621 93.0125 77.4000 78.7000
2013.06 75.2104 73.8749 76.5459 51.0000 52.5000
2013.07 81.2398 79.9760 82.5036 57.0000 57.0000
2013.08 82.0495 80.7687 83.3302 60.0000 66.0000
2013.09 92.5473 90.9477 94.1470 34.6000 36.9000
2013.10 87.4447 85.8942 88.9952 74.5000 85.6000
2013.11 90.0570 88.1851 91.9289 73.9000 77.6000
2013.12 83.3973 81.7211 85.0734 77.8000 90.3000
2014.01 104.7289 102.5265 106.9314 77.4000 82.0000
2014.02 90.5046 88.7851 92.2240 93.9000 102.8000
2014.03 99.6098 97.9287 101.2908 80.9000 92.2000
2014.04 110.8564 108.9752 112.7376 76.9000 84.7000
2014.05 110.7137 108.9429 112.4845 72.3000 75.2000
2014.06 91.0392 89.5636 92.5147 67.2000 71.0000
2014.07 99.6661 98.0408 101.2914 72.5000 72.5000
2014.08 100.1774 98.6732 101.6816 71.2000 74.7000
2014.09 114.1735 112.3314 116.0155 83.2000 87.6000
2014.10 107.6668 105.8658 109.4677 59.5000 60.6000
2014.11 111.4176 109.3160 113.5191 65.8000 71.1000
2014.12 100.8565 98.6682 103.0449 75.8000 78.0000
2015.01 63.9101 62.6783 65.1419 65.9000 67.0000
2015.02 55.2072 53.9184 56.4960 42.4000 44.8000
2015.03 59.5511 58.4580 60.6442 38.0000 38.4000
2015.04 67.0902 65.9001 68.2802 49.0000 54.4000
2015.05 66.6091 65.5393 67.6789 56.3000 58.8000

Continued on next page
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Table 6: Year Month (ym) Relative Sunspot Numbers with 99% CI

ym Ra lci99 uci99 aavso silso

2015.06 55.2559 54.3140 56.1979 50.2000 68.3000
2015.07 59.3031 58.2899 60.3162 47.9000 65.8000
2015.08 61.0534 60.0527 62.0542 39.5000 57.2000
2015.09 69.3058 68.1774 70.4342 49.2000 72.1000
2015.10 65.3241 64.2106 66.4375 39.3000 48.3000
2015.11 68.1038 67.1819 69.0257 39.6000 55.9000
2015.12 61.1754 59.9432 62.4076 36.4000 44.8000
2016.01 35.6519 35.0186 36.2852 33.7000 43.3000
2016.02 30.1633 29.5652 30.7614 38.3000 46.8000
2016.03 32.4183 31.8219 33.0146 30.5000 38.9000
2016.04 35.9003 35.2624 36.5383 26.6000 30.9000
2016.05 36.6282 36.0022 37.2542 33.7000 48.4000
2016.06 30.0087 29.5326 30.4849 13.1000 19.5000
2016.07 32.8929 32.3849 33.4010 21.2000 27.5000
2016.08 33.5176 32.9657 34.0696 33.0000 47.9000
2016.09 37.8122 37.1848 38.4396 27.7000 37.1000
2016.10 35.8743 35.2526 36.4959 22.7000 31.7000
2016.11 36.9875 36.3505 37.6245 14.0000 22.2000
2016.12 33.5318 32.8592 34.2044 11.1000 20.0000
2017.01 20.9517 20.5529 21.3505 18.4000 26.2000
2017.02 17.5624 17.2182 17.9066 14.4000 20.6000
2017.03 19.2990 18.9575 19.6404 11.3000 15.5000
2017.04 21.7835 21.4286 22.1384 21.6000 33.2000
2017.05 21.6594 21.3064 22.0124 12.5000 18.1000
2017.06 17.8449 17.6146 18.0751 15.5000 19.3000

Figure 10 is a plot of the monthly data used to construct the GLMM, the GLMM monthly mean
sunspot numbers, and the Solar Influence Data Center (SIDC) estimates found on the National
Oceanic and Atmospheric Administration’s (NOAA) web site for the NOAA National Geophysical
Data Center SIDC values. Each box and whisker plot is the summarized the monthly data used
to construct the loglinear mixed model. The solid bar near the center of each box is the median of
the data. The boxes themselves represent the interquartile range, IQR, (25th to 75th percentiles) of
the data. The whiskers are terminated by short horizontal bars, and cover from the monthly data
from 1.5*IRQ below the first quartile to 1.5*IQR above the third quartile. The points beyond the
whiskers are values that contribute to the overdispersion of the residuals.

Figure 10 also shows a solid red curve that connects the boxes of the GLMM monthly sunspot
fitted values when the seeing conditions are excellent. The solid green curve is the AAVSO monthly
mean sunspot numbers. The AAVSO estimates are obtained using the Shapley/Wald model de-
scribed in 2 above. The solid blue curve is the SIDC values. Both the AAVSO and SIDC numbers

http://www.ngdc.noaa.gov/nndc/struts/results?t=102827&s=5&d=8,430,9
http://www.ngdc.noaa.gov/nndc/struts/results?t=102827&s=5&d=8,430,9
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elimate counts from fair and poor seeing conditions. In addition, they force the counts data to
approximately follow a Gaussian distribution and remove counts of zeros. These analyses bias the
total amont of counts variance which explains in part the differences from the GLMM numbers.

Shapley (1949) removed zeros from his analysis. This is to avoid taking the natural logarithm
of zero, which is not analytically tractable. Counts of zero are not a problem with models using
the quasi-Poisson distribution in which zero is a valid count, and thus presents no analytical issues
especially, as was seen in Figure ??, these data are zero-inflated. Shapley also assumes that between-
observer covariance is zero. This assumption is not required when treating the observer as a random
effect, and the correlation structure is under investigation to further inprove the GLMM. Also, no
minimum sunspot counts are needed from each observer to fit the GLMM.

The Shapley model forces the slop term to be one, which, as stated earlier, is generally an
assumption that is strictly data set dependent. The GLMM makes no such assumption on the
fixed effects slope parameters, and thereby make the GLMM more robust to changes in future
reported sunspot counts. We see then, that as the GLMM is designed specifically for counts data,
the conditions imposed by Shapley for the Wald-based model are not necessary for unbiased sunspot
number estimation.

6 GLMM Improvements

There are three basic areas for model improvement. The first area for improvement is to test and
incorporate additional viable fixed effects. The known fixed effects slated for test are observer
experience, the image magnification, type of filter, and the method of observation of each observer.
The correct magnification is required not just to assure all possible sunspots can be resolved, but
also to maintain consistency with historical observations. Two filter types are in common use and
are known as white filters and Hydrogen α filters. The two methods are projection and direct
observation. Projection focuses the solar image onto a screen and direct observation is the solar
image is focused on the retina. A new model will incorporate magnification as a continuous effect,
and the filter and method will each be represented as a nominal effect.

A current and major area of investigation in GLMM’s is the treatment of the random effects,
which is the second area for model improvement. As was noted in Sections 5.2 and 5.3, the residuals
are overdispersed. This is likely due to latent population heterogeneity in the sunspot counts. A
possible source for this overdispersion is how the observer random effect is treated. This model
assumes the random effect follows a normal distribution and are uncorrelated. Future models will
explore the use of conjugate pairs for overdispersion reduction. It is apparent in the top half of Table
7 that the mean-variance ratio is reduced toward one as the treatment of the observer effect begins
as fixed, analyzed as if normally distributed, with the best ratio for the Poisson-Gamma conjugate
pair. If the observer counts have either or both within observer or across observer correlation, the
correlation structure then can be accounted for in the error structure of the model, thus segregating
known sources of variation from the ubiquitous random variation. This segregation will reduce the
amount of random variation in the model residuals which is a desireable property for empirical
models.

Finally, the third area for improvement is the identification of the cyclical behavior in the
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Table 7: Improvements from Error Structure Changes

η|u Dist Link g(µ) u Dist Link v(u) Method s2/x̄

Poisson log fixed NA GLS 22.87
Poisson log Normal identity log-likelihood 21.66
Poisson log Gamma log h-likelihood 18.49

Poisson log Poisson identity h-likelihood ?
Gamma log Gamma identity h-likelihood ?
Gamma inverse inverse Gamma inversey h-likelihood ?

residuals for incorporation into the model. Sunspot cycles occur on both long term and short term
periods. As the current model is only one solar cycle long (cycle number 24), only the short term
periodicity can be studied and modeled. Sunspot number monthly periodicity is currently under
investigation.

7 Conclusions

We began the sunspot modeling process with a description of the work preceding our use of gen-
eralized linear mixed models (GLMM) for estimating monthly sunspot numbers. The description
included discussions on fitting straight lines to two variables each with measurement errors, and
how these methods were used by Shapley (1949) from a technique developed by Wald (1940). This
was followed by a short discourse on the applicability of the loglinear quasi-Poisson GLMM.

Data supplied by the American Association of Variable Star Observers Solar Division spanning
the period from May 2010 through June 2017were used to fit a GLMM. We showed each predictor’s
role in the model, and how these predictors contributed to the fit of the model. We found the
GLMM has overdispersion that needs further attention, and we discussed remedial measures and
model improvements in general.

The method for determining monthly sunspot counts, adjusted for the variance due to the
random effects, and after accounting for the variability in counts due to time in the solar cycle,
seeing conditions, and experience was presented.

Finally, we evaluated the GLMM assumptions against the Shapley assumptions and conditions
and found the GLMM to have desirable properties for making estimates of monthly sunspot num-
bers. The GLMM method may be applied in the presence of reference counts to improve sunspot
number accuracy. This GLMM method, in combination with other solar activity measures, can be
used to generate a solar activity index that may represent underlying solar physical processes.
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